SERUM LEVEL OF HEPCIDIN IN DIABETIC AND NON DIABETIC CHRONIC KIDNEY DISEASE STAGE 5 AND ITS APPLICATION IN ANEMIA

Thesis

Submitted for the Partial Fulfillment of Master Degree in Nephrology

Presented By

Hamdi Abdel-Azeim Mohammed *M.B., B.Ch*

Supervisors

Prof. Dr. Ahmmed Aziz Abdel-Nabi

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Prof. Dr. Waleed Anwar Abdel-Mohsen

Assistant Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Dr. Wessam ElSayed Saad

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2014

List of Contents

Title	Page No.
List of Abbreviations	iii
List of Tables	vi
List of Figures	viii
Introduction	1
Aim of the work	4
Review of literature	
Chapter (I): Chronic Kidney Disease	5
• Introduction	5
Defining of Chronic kidney disease and devel staging system	• 0
• Prevalence of Chronic kidney disease	11
Etiology of Chronic kidney disease	15
• Risk Factors of Chronic kidney disease	18
• Clinical Picture of Chronic kidney disease	23
 Assessment and Diagnosis of Renal Function 	25
Management of Chronic kidney disease	31
• Complication Chronic kidney disease	39
Stage 5 Chronic kidney disease	45
Chapter (II): Diabetes and Chronic kidney disease.	48
Diabetes and Chronic Kidney Disease	48
Chapter (III): Anemia of Chronic Kidney Disease	
• Introduction	56
Anemia of Chronic Kidney Disease	56
Prevalence of Anemia of Chronic Kidney Disease	se58
Pathogenesis of Anemia of Chronic Kidney Disea	se59
Diagnosis of Anemia of Chronic Kidney Disease	è65

• Laboratory investigation of Anemia of Chronic Kidney Disease65
Treatment of Anemia of Chronic Kidney Disease66
• Complication of Anemia of Chronic Kidney Disease71
Optimal Target of Hemoglobin concentration in
CKD73
Chapter (IV): Hepcidin Hormone75
• Introduction75
• Discovery of Hepcidin76
• Structure of Hepcidin77
Biological action of Hepcidin79
• Regulation of Hepcidin80
Hepcidin and Anemia of Chronic Kidney Disease83
• Hepcidin and Dialysis87
• Hepcidin and diabetes88
• Immunoassay of Hepcidin91
• Therapeutic and Diagnostic uses of Hepcidin95
Subjects and Methods98
Results113
Discussion135
Summary146
Conclusion149
References
Arabic Summary

List of Abbreviations

ACE	Angiotensin-converting enzyme
ACEI	Angiotensin converting enzyme inhibitor
ACE-I	Angiotensin-converting enzyme inhibitor
AER	Albumin excretion rate
ALERT	Assessment of Lescol in Renal Transplant
	Atherosclerotic renal artery stenosis
ARB	Angiotensin receptor blocker
ARB	Angiotensin receptor blocker
ARF	Acute renal failure
AUA	American Urological Association
	Aliskiren in the Evaluation of Proteinuria in Diabetes
BGS	British Geriatrics Society
BMD	Bone mineral density
BSA	Body surface area
	Cholesterol and Recurrent Events
CARI	Caring for Australians with Renal Impairment
CHD	Coronary heart disease
CHOIR	Correction of Hemoglobin and Outcomes in Renal
	Insufficiency (Study)
CKD	Chronic kidney disease
CKD	Chronic kidney disease
Cr	Creatinine
CREATE	Cardiovascular Risk Reduction by Early Anemia
	Treatment with Epoetin (Trial)
CT	Computed tomography
CVD	Cardiovascular disease
CVD	Cardiovascular disease
DAIS	Diabetes Atherosclerosis Intervention Study
DCCT	The Diabetes Control and Complications Trial
DKD	Diabetic kidney disease
DM	Diabetes mellitus
EDIC	Epidemiology of Diabetes Interventions and Complications

List of Abbreviations (Cont...)

eGFR	Estimated glomerular filtration rate
EPO	Erythropoietin
ERF	Established renal failure
ESA	Erythropoiesis stimulating agent
ESRD	End-stage renal disease
FDA	Food and Drug Administration
GFR	Glomerular filtration rate
GFR	Glomerular filtration rate
Hb	Hemoglobin
HbA1c	Hemoglobin A1c
HDL-C	High-density lipoprotein cholesterol
Нер	Hepcidin
HOPE	Heart Outcomes Prevention Evaluation Study
HOT	Hypertension optimal treatment
HPS	Heart Protection Study
hs-CRP	High sensitive C-reactive protein
K/DOQI	Kidney Disease Outcomes Quality Initiative
KDIGO	Kidney Disease: Improving Global Outcomes
KDIGO	Kidney Disease: Improving Global Outcomes
KDOQI	Kidney Disease Outcomes Quality Initiative
MDRD	Modification of diet in renal disease
MR	Magnetic resonance
NCCAM	National Center for Complementary and Alternative
	Medicine
NHANES	National Health and Nutrition Examination Survey
NHANES	National Health And Nutrition Examination Survey
NHS	National Health Service
NICE	National Institute for Health and Clinical Excellence
NIHCE	National Institutes of Health and Clinical Excellence
NKF	National Kidney Federation
NKF	National Kidney Foundation
NSAID	Non-steroidal anti-inflammatory drug

NSF..... National service framework

List of Abbreviations (Cont...)

RAS	Renin-angiotensin system
RAS	Renin–angiotensin system
RCT	Randomized controlled trial
RRT	Renal replacement therapy
SHARP	Study of Heart and Renal Protection

SLE...... Systemic lupus erythematosus

List of Tables

Table No.	Title Page No.	
Table (1):	Criteria for Chronic Kidney Disease	8
Table (2):	GFR and Albuminuria Categories in the New Classification	10
Table (3):	Clinical Action Plan for Management of CKD	32
Table (4):	Mainstay of Treatment in Chronic Kidney Disease Complications	41
Table (5):	CKD Staging and Action Plan	47
Table (6):	Dosing Adjustment by CKD Stage for Drugs Used To Treat Hyperglycemia	55
Table (7):	Descriptive and Comparative Statistics of Studied Parameters in Patient Vs Control groups:	121
Table (8):	Descriptive Statistics of Studied Parameters in Patients Groups (Diabetic and non diabetic) and Control Groups:	122
Table (9):	Descriptive and Comparative Statistics of Studied Parameters in Non-Diabetic and Diabetic Vs Control Groups:	123
Table (10):	Descriptive and Comparative Statistics of Studied Parameters in Non-Diabetic Vs Diabetic groups:	124
Table (11):	Correlation Status between S.Hepcidin Level and All Studied Parameters in Patient Group:	125
Table (12):	Correlation status between S.Hepcidin level and all studied parameters in Diabetic and Non-diabetic patients group:	
Table (13):	Descriptive Statistics of Studied Parameters in Diabetic and Non diabetic Medicated (Under Erythropoietin) and Non Medicated (Not-Under Erythropoietin) Vs Control Groups:-	127

List of Tables (Cont...)

Table No.	Title Page No.).
Tablet (14):	Descriptive and Comparative Statistics of Studied Parameters in Non-Diabetic Medicated (Under Erythropoietin) Vs Non Medicated (Not-Under Erythropoietin)	
Tablet (15):	Descriptive and Comparative Statistics of Studied Parameters in Diabetic Medicated (Under Erythropoietin) Vs Diabetic None Medicated (Not-Under Erythropoietin) Groups:-	
Tablet (16):	Descriptive and Comparative Statistics of Studied Parameters in Non-Diabetic Medicated (Under Erythropoietin) Vs Diabetic Medicated (Under Erythropoietin) Groups:-	
Table (17):	Gander group cross tabulation.	131

List of Figures

Fig. No.	Title Page No.	
Fig. (1):	Classification of CKD by GFR and albuminurea	10
Fig. (2):	Prevalence of CKD World wide	11
Fig. (3):	Etiology of CKD (National Kidney Foundation of Michigan 2007	18
Fig. (4):	Etiology of CKD	18
Fig. (5):	Risk factor association with CKD	20
Fig. (6):	Risk factors of CKD	22
Fig. (7):	Clinical manifestation of CKD	25
Fig. (8):	Complication of CKD	40
Fig. (9)	Stages of CKD and GFR	47
Fig. (10):	Primary Causes of CKD	50
Fig. (11):	Prevalence of comorbidities by CKD stage	50
Fig. (12):	Etiology of Anemia of CKD	60
Fig. (13):	Etiology of Anemia	60
Fig. (14):	Etiology of Anemia of CKD	61
Fig. (15):	Management of anemia in CKD	71
Fig. (16):	Sequences and Three-Dimensional Structure of Hepcidin	78
Fig. (17):	Hepcidin as the main regulator of systemic iron homeostasis	80
Fig. (18):	Signals and pathways controlling Hepcidin expression in the liver	82
Fig. (19):	Putative regulation of hepcidin in chronic kidney disease	83

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (20):	Serum hepcidin across (CKD) stages	86
Fig. (21):	Relationship between ferritin, hs-CRP and hepc	idin-2586
Fig. (22):	Hepcidin levels in healthy control subjects patients	
Fig. (23):	Hepcidin concentrations in the various iron di measured by the WCX-TOF-MS	
Fig. (24):	Hepcidin interaction with ferroportin controls iron flows into plasma	
Fig. (25):	Box-Plot Chart showing difference between groups and Control group concerning serum Hep	
Fig. (26):	Box-Plot Chart showing difference between Patients groups (diabetic and non diabetic) ar group concerning serum Hepcidin level.	nd Control
Fig. (27):	Box-Plot Chart showing difference between Patients groups (diabetic and non diabet medication and not under medication) concern Hepcidin level.	ic, under ing serum
Fig. (28):	Box-Plot Chart showing difference between dial medication and not under medication concern Hepcidin level.	ing serum
Fig. (29):	Box-Plot Chart showing difference between no under medication and not under medication of serum Hepcidin level.	concerning
Fig. (30):	Box-Plot Chart showing difference between di non diabetic, under medication concerning serun level.	n Hepcidin

NTRODUCTION

CKD is defined as the presence of kidney damage, manifested by abnormal albumin excretion or decreased kidney function, quantified by measured or estimated glomerular filtration rate (GFR) that persists for more than 3 months (KDOOI, 2006).

The 2002 guidelines for definition and classification of this disease represented an important shift towards its recognition as a worldwide public health problem that should be managed in its early stages by general internists. Disease and management are classified according to stages of disease severity, which are assessed from glomerular filtration rate (GFR), and albuminuria, and clinical diagnosis (cause and pathology) (*Levey AS*, 2011).

Anemia is a major complication of chronic kidney disease (CKD) (*Tsubakihara et al.*, *2010*). Anemia occurs when there is a reduction in one or more of the major red blood cell measurements; hemoglobin concentration, hematocrit, or red blood cell counts (*Robert et al.*, *2008*). The World Health Organization (WHO) defines anemia as a hemoglobin concentration lower than 13.0 g/dL in men and postmenopausal women and lower than 12.0 g/dL in other women (*NIHCE*, *2008*). Etiology of anemia is frequently difficult to determine even after extensive investigations including bone marrow examinations. It is reported as nutritional (34%),

renal insufficiency12%), chronic diseases (20%) and unexplained (24%) (*Karuna et al., 2011*). A normocytic normochromic anemia usually accompanies progressive of anemia of chronic kidney Disease (CKD) (*Besarab et al., 2000*), and the overall prevalence of CKD-associated Anemia is approximately 50% (*McClellan et al., 2004*). Although anemia may be diagnosed in patients at any stage of CKD, there is a strong correlation between the prevalence of anemia and the severity of CKD (*Guenter et al., 2005*). Treatment of CKD-associated anemia has been dramatically advanced by the introduction of recombinant human erythropoietin (EPO). However; CKD-associated anemia can be resistant to EPO treatment. In addition to EPO deficiency, inflammatory effects of the primary disease, inflammatory effects of its complications and of its treatments, and iron-restricted erythropoiesis could be involved in this pathogenesis (*Ganz et al., 2007*).

Hepcidin, a small peptide produced by the liver, is a recently discovered central mediator of iron homeostasis via regulation of ferroportin, hepcidin inhibits intestinal iron absorption and iron release from macrophages and hepatocytes (*Young and Zaritasky*, 2009).

Hepcidin, a 25-amino acid peptide primarily produced in the liver, is thought to be the central regulator of body iron metabolism (*Kemna et al.*, 2008). Hepcidin controls the plasma iron concentration by inhibiting iron export by ferroportin from enterocytes and macrophages (*Nemeth et al.*, 2004). Therefore, increased Hepcidin production leads to a decrease in plasma iron concentrations and to iron-restricted erythropoietin (*Ganz et al.*, 2007).

Hepcidin expression is induced by iron loading (*Pigeon et al., 2001*) and by inflammation (*Nemeth et al., 2004*) and is suppressed by erythropoietic activity (*Pak et al., 2006*).

Studies of humans with chronic infections and severe inflammatory disease have shown markedly increased levels of Hepcidin, strongly suggesting that elevated Hepcidin levels play a key role in the anemia of inflammation and reticuloendothelial blockade (*Nemeth et al.*, 2004).

AIM OF THE STUDY

The aim of the present study is to spot the light on the use of serum level of Hepcidin as biochemical marker in Chronic Kidney Disease patients and to compare its level in diabetic and non diabetic Chronic Kidney Disease patients' stage 5 before hemodialysis.

CHRONIC KIDNEY DISEASE

Introduction:

Chronic kidney disease (CKD) is a worldwide public health problem. It is recognized as a common condition that is associated with an increased risk of cardiovascular disease and chronic renal failure (CRF) (*Matsushita*, 2010).

Chronic kidney disease (CKD) is recognized as a major health problem affecting approximately 13% of the US population. In the United States, the incidence and prevalence of kidney failure are rising, the outcomes are poor, and the costs are high. The number of persons with kidney failure who are treated with dialysis and transplantation is projected to increase from 340 000 in 1999 to 651 000 in 2010 (*NKF/KDOQI*, 2012).

Chronic kidney disease (CKD) epidemiologic wave is a worldwide health issue associated with high morbidity, mortality and rising health-care costs. Approximately 20 million patients in the USA have CKD, and this number is estimated to reach 30 million by 2010. This is mainly the result of ageing as well as increasing frequency of type 2 diabetes mellitus, hypertension and metabolic syndrome in the general population (*Levey et al., 2007*). Patients with CKD are more likely to die than to progress to endstage renal disease (ESRD) and cardiovascular disease (CVD) accounts for a large proportion of these deaths. This increased