Evaluation of Serum Thioredoxin Level as a New Diagnostic Marker for Hepatocellular Carcinoma

Thesis

Submitted for Partial Fulfillment of Master degree In Internal Medicine

By

Mohamed Ibrahem Abo Elfotoh Abd Elrahman

M.B.B.CH Faculty of Medicine Tanta University

Supervised by

Prof. Hesham Ezz-Eldin Said

Professor of Internal Medicine Faculty of Medicine-Ain Shams University

Prof. Mohamed Abdelmoghny Mostafa

Professor of Internal Medicine Faculty of Medicine-Ain Shams University

Assist. Prof. Nevine Ibrahim Musa

Assistant Professor of Internal Medicine Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
2017

First of all, I would like to express my deep gratitude to **Allah**, the most merciful and the most grateful. Thanks for all gifts and thanks for love of all people I am living with.

I am greatly honored as this first scientific effort was under the supervision of the Prof. Dr. Hesham Ezz-Eldin Said, Professor of internal Medicine, Faculty of Medicine, Ain Shams University. I'd like to express my profound gratitude and sincere appreciation for his kind supervision, continuous encouragement and unlimited support in every step throughout this work. I'd like to express my deepest gratitude and sincere appreciation to my Prof. Dr. Mohamed Abdelmoghny Mostafa, Professor of Internal medicine, Faculty of Medicine, Ain Shams University for his continuous support, great encouragement, endless flow of knowledge, and great help.

I am particularly very grateful to **Prof. Dr.Nevine**Thrahim Musa, Assistant Professor internal Medicine, Faculty of Medicine, Ain Shams University for his valuable advice, encouragement and great help throughout this work.

I'd like to express my profound gratitude to my family.

Finally, I am very grateful to every person helped me in preparation of this work.

سورة البقرة الآية: ٣٢

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Study	12
Review of Literature	
Hepatocellular Carcinoma	13
■ Thioredoxin	85
Subjects and methods	93
Results	101
Discussion	130
Summary	140
Conclusion	142
Recommendation	143
References	144
Arabic summary	

List of Tables

Table No.	Title Page	e No.
Table (1):	Various HCC biomarkers and their	EE
Table (2):	clinical use	ออ
1 abic (2).	(AJCC) staging system for	
	Hepatocellular carcinoma (HCC)	64
Table (3):	BCLC staging for HCC	
Table (4):	Okuda system for HCC staging	
Table (5):	The Cancer of the Liver Italian Program	66
Table (6):	Performance status score	67
Table (7):	Several methods of loco-regional	
	treatment of HCC	75
Table (8):	Child-Pugh classification of chronic	
	liver disease	
Table (9):	Interpretation of MELD score	96
Table (10):	Demographic characteristics among the	101
Table (11).	studied groups.	101
Table (11):	Liver condition among the studied	100
Table (12):	groups Radiological findings among the studied	102
Table (12):	groups using abdominal	
	ultrasonography.	104
Table (13):	Focal lesion characteristics among HCC	10 1
_ = = = = = = = = = = = = = = = = = = =	group using Triphasic CT abdomen.	107
Table (14):	CBC, renal function and blood glucose	
	among the studied groups	108
Table (15):	Liver function tests among the studied	
	groups.	110
Table (16):	CRP, AFP and TRX among the studied	
	groups.	112
Table (17):	Correlation between TRX and other	
	variables among the studied groups	
	(1/2).	116

List of Tables cont...

Table No.	Title P	age No.
Table (18):	Correlation between TRX and other variables among the studied group (2/2).	OS
Table (19):		ze
Table (20):		er Os
Table (21):		er os
Table (22):	Comparison between single and multiplesions regarding AFP and TRX amon	le ıg
Table (23):	Diagnostic performance of TRX and AF as a diagnostic markers for HCC	P
Table (24):	Diagnostic characteristics of TRX an AFP as a diagnostic markers for HCC	ıd
Table (25):	Diagnostic characteristics of combine serum TRX and AFP in diagnosis	ed
	HCC cases.	129

List of Figures

Fig. No.	Title Page N	V o.
Figure (1):	Incidence and mortality of HCC in Egyptian men	15
Figure (2):	Incidence and mortality of HCC in Egyptian women	
Figure (3):	Diagnostic algorithm for suspected HCC	
Figure (4):	HCC treatment according to The BCLC	
	staging system for HCC	70
Figure (5):	Structure of thioredoxin fold	
Figure (6):	Electron flow from NADPH to oxidized	
_	substrate proteins	88
Figure (7):	CRP among the studied groups	113
Figure (8):	AFP among the studied groups	114
Figure (9):	TRX among the studied groups	115
Figure (10):	Correlation between TRX and HCC lesion size among HCC group	119
Figure (11):	Comparison between single and multiple lesions regarding TRX among HCC	104
Figure (12):	group	
	markers for HCC	126

List of Abbreviations

Abb.	Full term
	Alpha 1 antitrypsin deficiency American Association for the Study of Liver Diseases Aflatoxin B1
	Alpha Fetoprotein L1, L2, L3
	Alpha Fetoprotein
AFU	Alpha-l-fucosidase
	American Joint Committee on Cancer
ALT	Alanine aminoTranferase
ASN 233	A single asparanin linked 233
	Aspartate aminotransferase
	Barcelona clinic liver cancer
BMI	Body Mass Index
CD	Cluster of Differentiation
CD166	Cluster of Differentiation 166
CECT	Contrast enhanced CT
CEMRI	Contrast enhanced magnetic resonance
	imaging
CEUS	Contrast Enhanced Ultrasound
CK 7	Cytokeratins 7
	Cancer of the Liver Italian Program score
CRP	C- Reacive Protein
CT	Computed tomography
	Child-Turcotte –pugh classification.
DCP	Des-gamma-carboxyprothrombin
DKK1	-
DM	Diabetes Mellitus
	Doppler Ultrasound
	European Association for Study of Liver
ECM	Extracellular matrix
	Epidermal growth factor receptor
	Egyptian Society of Liver Cancer.
EUS	Endoscopic US

List of Abbreviations cont...

Abb.	Full term
FBG	Fasting blood glucose
	Fluorodeoxyglucose
	Fibroblast growth factor
	Granulin epithelin precursor
	Gamma-Glutamyl Transferase mRNA
	Gamma-Glutamyl Transferase
	Global cancer statics estimate project of WHO.
	Golgi phosphoprotein 2
GP73	
GPC3	
Hb	v =
	Hepatitis B envelope antigen
	Hepatitis B virus
HCC	Hepatocellular Carcinoma
HCV	Hepatitis C virus
HCV-Ab	Hepatitis C antibody
HDV	Hepatitis D virus
HFL	Hepatic Focal Lesion
	Hepatocyte growth factor
HGF/SF	Hepatocyte Growth Factor/ scatter factor
HIV	Human Immune Deficiency
	Hepatic resection
	Heat Shock Protein 70
	Human telomerase reverse transcriptase mRNA $$
	Human telomerase reverse transcriptase
	Insulin-like growth factor-II
	Insulin Growth Factor Receptor
IL-6	
	International Normalized ratio
LC	
LCA	Lectin Lens Agglutinin

List of Abbreviations cont...

Abb.	Full term
LKM	Liver kidney microsome
	Liver transplantation
	Metastasis classification
	Multi Detector CT
MDK	
	Model for End Stage Liver Disease
MiRNAs	
	Magnetic resonance imaging
	Multi-drug resistance associated protein 2
	Micro wave ablation
	Node Classification
	Nonalcoholic fatty liver disease
	Non-Alcoholic steato Hepatitis
	National Cancer Institute
NO	
PAI	Percutaneous acetic acid injection
	Percutaneous ethanol injection
PIG3 P53	Inducible Gene-3
PIVIKA	Protein induced by vitamin K absence
PLT	Platelet
PPBG	Post prandial blood glucose
	Performance Score
PST	Performance Score test
PVT	Portal vein thrombosis
PVTT	Portal Vein Tumour Thrombosis.
RFA	Radiofrequency ablation
ROC	Receiver operating characteristic
ROS	Reactive oxygen species
RT-PCR	Reverse transcription –polymerase chain reaction
SF	
	Soluble liver antigen
TAC	Trans arterial chemoembolization

List of Abbreviations cont...

Abb.	Full term
TACE	. Transarterial chemoembolisation
TAE	. Trans arterial embolization
TARE	. Trans arterial radio-embolization
TGF-β1	. Transforming growth factor-beta 1
TLC	. Total leucocyte count
TNM	. Tumor, node, metastasis staging
TPO	. Thrombopoietin
TRX	. Thioredoxin
TSGF	. Tumor – Specific growth factor
TSGF	. Tumor-specific growth factor
USA	. United Sates of America
VEGF	. Vascular endothelial growth factor
VEGFR	. Vascular endothelial growth factor receptor
WBC	. White Blood Cells
WHO	. World health organization

Abstract

AFP was significantly higher in HCC group than in cirrhotic and control groups (p<0.001) with median levels (186.5), (9.3), (3.5) ng/ml respectively, and insignificantly higher in cirrhotic group than in control group while **CRP level** was significantly different among studied groups being highest in HCC group followed by cirrhotic group and lowest in control group (p<0.001) with mean levels (10.5 \pm 3.7), (6.1 \pm 2.2), (2.4 \pm 1.4) mg/dl respectively.

Laboratory results as regard Hb, platelet, albumin, AST, ALT and bilirubin revealed insignificant difference between HCC and cirrhotic group (p > 0.05).

TRX has better diagnostic performance than AFP in differentiating HCC from other groups at a cut off point \geq 100 ng/ml for TRX where sensitivity and specificity with positive predictive value and negative predictive value (81.8%, 88.9%, 90%, and 80%) respectively and at a cut off point \geq 25.6 ng/ml for AFP where sensitivity and specificity with positive predictive value and negative predictive value (60%, 76.7%, 72%, and 65.7%) respectively. Combined use of TRX and AFP revealed higher diagnostic performance than using one of each markers alone with sensitivity, specificity, positive predictive value, and negative predictive value (85.4%, 91.3%, 87.8, and 82.4%) respectively.

Keywords: Transforming growth factor-beta 1- Thrombopoietin-Thioredoxin- Percutaneous ethanol injection

Introduction

epatocellular carcinoma (HCC) is one of the most common forms of cancer in the world and is the third leading cause of cancer related death (*Jiang et al.*, 2014).

More than 80% of cases occur in the developing countries; rates are more than twice as high in men compared to women. Among primary liver cancers occurring worldwide, HCC is the most common, accounting for 70–85% of liver tumors (Castello et al., 2010).

Major risk factors for HCC include infection with HBV or HCV, alcoholic liver disease, and most probably nonalcoholic fatty liver disease (NAFLD). Less common causes include hereditary hemochromatosis, alpha1-antitrypsin deficiency, autoimmune hepatitis, and Wilson's disease. Most of these risk factors lead to the formation and progression of cirrhosis, which is present in 80 to 90% of patients with HCC (*El-Serag*, 2011).

Although tumor marker levels are not included in the diagnostic criteria for **HCC** screening in the or the guidelines of recommendations in the American Association for the Study of Liver Diseases (AASLD) or the European Association for the Study of the Liver (EASL), they provide valuable supportive information for diagnosing HCC (Toyoda et al., 2015).

Ultrasound examination of the liver and detection of AFP level in serum are commonly used to screen for HCC. Although detection of AFP level is easy and less expensive, but it shows less sensitivity, since elevation in AFP level is common in patients with chronic liver disease, pregnancy and germ cell tumors. AFP titers also rise with flares of active hepatitis, and may be persistently elevated in patients with cirrhosis. Ultrasound is better, but is more expensive, operator dependent and less reliable in the presence of cirrhosis. Thus, new markers with high sensitivity and specificity are required (Zakhary et al., 2013).

Current treatment strategies, such as liver transplantation, surgical resection or regional therapy for advanced HCC, are unsatisfactory. Chemotherapy is commonly used for the of various malignancies. However, systemic treatment cytotoxic chemotherapeutic agents have not significantly improved the survival of HCC patients because of the resistance of HCC to anticancer drugs. Tumor recurrence after curative liver resection remains high, and most patients die within several months of diagnosis (Jiang et al., 2014).

Thioredoxin (Trx) is an ubiquitous antioxidant enzyme that is found in organisms ranging from archae to mammals. The first thioredoxin was originally discovered in 1964 in Escherichia coli as an electron donor for ribonucleotide reductase, an enzyme required for DNA synthesis (Collet and Messens, 2010).

The Trx system plays a key role in regulating the overall intracellular redox balance. It basically comprises the small redox protein thioredoxin, nicotinamide adenine dinucleotide phosphate, in its reduced form (NADPH), and thioredoxin reductase (Trx R). Thioredoxin exerts many of its biological activities by reducing a variety of protein thiols, usually having a relatively low molecular weight disulfide. The activity of thioredoxin is regulated by NADPH, which in turn is produced by Glucose-6-phosphate dehydrogenase (G6PD), the ratelimiting enzyme of the oxidative hexose monophosphate shunt cycle (HMPS). Two thioredoxins have been cloned: (thioredoxin 1) that is found predominantly in the cytoplasm and (thioredoxin 2) that contains a mitochondrial import sequence (Li et al., 2015).

Thioredoxins (Trxs) play multivalent cellular roles. They act as reductases in redox control, protect proteins from oxidative aggregation and inactivation, help the cells cope with various environmental stresses (reactive oxygen species (ROS), peroxynitrite and arsenate), and regulate programmed cell death. Some thioredoxins also act as growth factor, modulate the inflammatory response, promote protein folding, or play important roles in the lifecycles of viruses and phages (Collet and Messens, 2010).