

Ain Shams University Faculty of Science Biochemistry Department

Development of Tissue - Engineered Corneal Substitutes from Fish Scale - Derived Collagen

A Thesis

Submitted for the degree of Master of Science
As a partial fulfillment for requirements of the master of science

Dalia Ahmed Mohamed Hamza

(B.Sc. in Biochemistry 2010)

Under the supervision of

Prof.Dr. Ahmed Osman Mostafa

Dr.Tamer Anwar Esmail

Professor and Head of Biochemistry Department Faculty of Science Ain Shams University Assistant Professor of
Medical Biotechnology
Genetic Engineering and
Biotechnology Research Institute
Scientific Research and
Technological Applications City

Development of Tissue - Engineered Corneal Substitutes from Fish Scale - Derived Collagen

A Thesis

Submitted for the degree of Master of Science
As a partial fulfillment for requirements of the master of science

By Dalia Ahmed Mohamed Hamza

(B.Sc. in Biochemistry 2010)

Biochemistry Department
Faculty of Science
Ain Shams University

Ain Shams University Faculty of Science Biochemistry Department

Development of Tissue - Engineered Corneal Substitutes from Fish Scale - Derived Collagen

A Thesis

Submitted for the degree of Master of Science
As a partial fulfillment for requirements of the master of science

Dalia Ahmed Mohamed Hamza

(B.Sc. in Biochemistry 2010)

Under the supervision of

Prof.Dr. Ahmed Osman Mostafa

Dr.Tamer Anwar Esmail

Professor and Head of Biochemistry Department Faculty of Science Ain Shams University Assistant Professor of
Medical Biotechnology
Genetic Engineering and
Biotechnology Research Institute
Scientific Research and
Technological Applications City

ACKNOWLEDGEMENTS

First, of all my obedience, devotion, deepest thanks and praise are due and fully extended as always to Allah, the greatest and almighty who has created us and bestowed upon us a lot of blessing which we cannot enumerate and thank enough. I am very thankful to Allah, the Almighty, for giving me strength, patience, and will to fulfill this work.

I would like to express my deepest appreciation and sincere gratitude to Prof.Dr. Ahmed Osman Mostafa, professor and head of Biochemistry Department, Faculty of Science, Ain Shams University, my supervisor, for his supervision, wisdom, invaluable guidance and encouragement. I truly hope that I remember and practice the many lessons he has taught me about how a good researcher writes, thinks and speaks. I would gratefully acknowledge him.

A special thanks goes to Dr. Tamer Anwar Ahmed who has been an excellent mentor, he is most responsible for helping me to do this work. He had confidence in me when I doubted myself. I can not express how grateful I am for his diligently responding to my endless questions without complaint.

I would like to extend my deepest gratitude to the all of my professors and colleagues in city of scientific research and technological applications for their facilities that they offered to achieve my work.

My sincere thanks to all my friends and to everyone helped me and supplied me with the facilities during this work.

Most significantly, I must acknowledge the support and love that my whole family has provided throughout these years. No words can ever express my gratefulness to every member of my beloved family. Special thanks to my mother, for believing in me and never doubting that I'd get through this. I acknowledge that without her, none of this would have been possible and meaningful.

Declaration

I declare that this thesis has been composed by myself and that the work of which it is a record has been done by myself. This thesis has not been submitted for a degree at this or any other university.

Dalía Ahmed Mohamed Hamza

ABSTRACT

Dalia Ahmed Mohamed Hamza. Development of Tissue - Engineered Corneal Substitutes from Fish Scale - Derived Collagen. Unpublished Master of Science Thesis, Department of Biochemistry, Faculty of Science, Ain Shams University, 2015.

A tissue engineered corneal substitute is considered a promising solution to overcome the limitations of corneal replacement with allografts and drawbacks of keratoprostheses. The purpose of this study was to evaluate the suitability of collagen obtained from tilapia (Oreochromis niloticas) scales as an alternative source for common collagen sources including bovine skin and tendons, porcine skin and rat tail in preparation of tissue engineered corneal substitutes. Yield of pepsin solubilized collagen obtained from tilapia scales using a simple method consisting of four sequential steps on dry and wet weight basis was promising. The extracted fish scale collagen was identified using sodium dodecyl sulphate polyacrylamide gel electrophoresis which showed that collagen was composed of more than one subunit with high molecular weight. The pepsin solubilized collagen was dissolved in acetic acid to give an acidic transparent solution that used only and with other four crosslinking agents: glutraldehyde (GLU), tannic acid (TA), gallic acid (GA) and [1-(3-dimethyl aminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)/ N-hydroxysuccinamide (NHS)] to prepare five different formulations of collagen scaffolds. Optical and biological characterization was carried out for the five collagen scaffolds. Besides, thickness and water content of the five scaffolds were determined. The five collagen scaffolds revealed lower thickness in comparison with human cornea. The water content of three scaffolds (fish scale collagen scaffold, fish scale collagen scaffold crosslinked with EDC/NHS and fish scale collagen scaffold crosslinked with TA) was comparable with that of the human cornea. The light transmission of three scaffolds (fish scale collagen scaffold, fish scale collagen scaffold crosslinked with GLU and fish scale collagen scaffold crosslinked with TA) was comparable with that of the human cornea. The biocompatibility of two scaffolds (fish scale collagen scaffold and fish scale collagen scaffold crosslinked with EDC/NHS) was superior to the positive control. These results were considered preliminary promising results in cornea tissue engineering.

Key Words: Cornea, Collagen, Tissue Engineering, Scaffold, Fish Scales, Tilapia (*Oreochromis niloticas*).

CONTENTS	Page
1. Introduction	1
1.1. Anatomy and Functionality of the Cornea	1
1.2. Corneal Diseases and Blindness	5
1.3. Treatment Options for Corneal Blindness	7
1.3.1.Transplantation using human donor corneas	7
1.3.2.Transplantation using artificial corneas	9
1.4.Tissue Engineering	17
1.4.1.Biomaterials	17
1.4.2. Hydrogels	20
1.4.3. Collagen	22
2. Aim of the work	31
3. Materials and Methods	32
3.1. Materials	32
3.2. Methods	35
3.2.1. Fish Scale Collagen Extraction	35
3.2.2. Fish Scale Collagen SDS-PAGE	36
3.2.3. Preparation of Collagen Scaffolds	40
3.2.4. Assessment of Scaffold Thickness	43
3.2.5. Assessment of Scaffold Equilibrium Water Content	44
3.2.6. Assessment of Scaffold Light Transmission	44
3.2.7. Assessment of Scaffold Biological Properties	45
4. Results	50
4.1. Fish Scale Collagen Extraction	50
4.2. Fish Scale Collagen SDS-PAGE	51
4.3. Preparation of Collagen Scaffolds	52

4.4. Assessment of Scaffold Thickness	54
4.5. Assessment of Scaffold Equilibrium Water Content	54
4.6. Assessment of Scaffold Light Transmission	57
4.7. Assessment of Scaffold Biological Properties	61
5. Discussion	66
6. Summary and Conclusion	77
7. References	80

LIST OF FIGURES

Figure 1.	Anatomy of the eye and the cornea	Page 1
2.	Schematic of cornea cross section: five layers of human cornea	3
3.	Global causes of blindness	7
4.	Schematic of collagen triple helix (tropocollagen), microfibrils, fibrils, and fibers	25
5.	Collagen fiber formation from tropocollagen	26
6.	Schematic of the collagen isolation procedure from different fish components	30
7.	Extraction of collagen from fish scales	50
8.	SDS-PAGE showing protein banding patterns of acid and pepsin Solubilized collagen	51
9.	Comparison of the mean \pm SE of equilibrium water content for the five scaffolds with that of the human cornea	55
10.	Comparison of the mean \pm SE of light transmission for the five scaffolds relative to the human cornea	58
11.	Comparison of percentage of viability for our five scaffolds relative to the positive control.	65

LIST OF TABLES

Table		Page
1.	Summary table of the structure and function of the primary corneal layers	4-5
2.	A summary of the major collagen families, examples of collagen types within these families and their characteristic features	24
3.	Yield of collagen	50
4.	Comparison of the macroscopic appearance of the five scaffolds	52-53
5.	Comparison of the mean \pm SE of thickness for the five scaffolds with that of the human cornea	54
6.	Comparison of the mean \pm SE of the equilibrium water content of the five scaffolds showing the significant difference relative to the human cornea	56
7.	The significant difference of water content between the five scaffolds	57
8.	Comparison of the mean \pm SE of light transmission for five scaffolds showing the significant difference relative to Human cornea	59
9.	The significant difference of light transmission between the five scaffolds	60
10.	Comparison of the Stimulation Index (SI) of the five scaffolds	61
11.	Inverted light micrograph of the human skin fibroblasts morphology and proliferation over the scaffolds compared with the control	62-64
12.	The percentage of viability for five scaffolds relative to the positive control	65

LIST OF ABBREVIATION

ASC Acid-solubilized collagen

PSC Pepsin-solubilized collagen

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel

electrophoresis

WSCs Water-soluble carbodiimides

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

NHS *N*-hydroxysuccinimide

GLU glutraldehyde

TA Tannic acid

GA Gallic acid

PBS Phosphate Buffered Saline

MTT 3-(4,5-dimethylthiazoly-2-yl)-2,5-

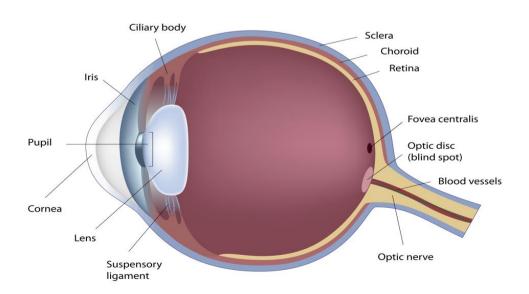
diphenyltetrazolium bromide

PBMCs peripheral blood mononuclear cells

OD Optical density

TE Tissue Engineering

DMEM Dulbecco's modified Eagle's medium


Introduction

1- Introduction

1.1 Anatomy and Functionality of the Cornea.

The human cornea constitutes the anterior, central portion of the eye that is responsible for most light transmission and refraction to the retina for vision (1). The cornea offers 75% of the refractive power of the human eye, allowing transmission of light through it to be focused onto the retina. As well as photo-protection, by significant absorbance of UV radiation (2), the cornea acts as a thick, elastic physical barrier protecting the internal ocular structures from outside insults, which may be physical, chemical or microbial. Furthermore, the cornea withstands changes in intraocular pressure (IOP) and curvature changes of the eye (1).

Figure 1.1 Anatomy of the eye and the cornea (3). Human Eye Anatomy

The cornea is a smooth, clear tissue with a thickness that is approximately 0.52 mm centrally and 0.65 mm peripherally and its average horizontal diameter is 11.7 mm (4). Unlike most tissues in the body, the cornea contains no blood vessels to nourish or protect itself against infection. Instead, the cornea receives its nourishment from the tears and aqueous humor that fills the chamber behind it. The cornea must remain transparent to refract light properly, and the presence of even the tiniest blood vessels can interfere with this process (5). To see well, all layers of the cornea must be free of any cloudy or opaque areas. Though the cornea is clear and seemingly lacks substance, it is densely innervated with sensory nerve fibers that make it one of the most sensitive tissues of the body (6). As shown in Fig.1.2, The human cornea consists of five distinct layers. From anterior to posterior they are 1) epithelium, 2) Bowman's layer, 3) stroma, 4) Descemet's membrane, and 5) endothelium.