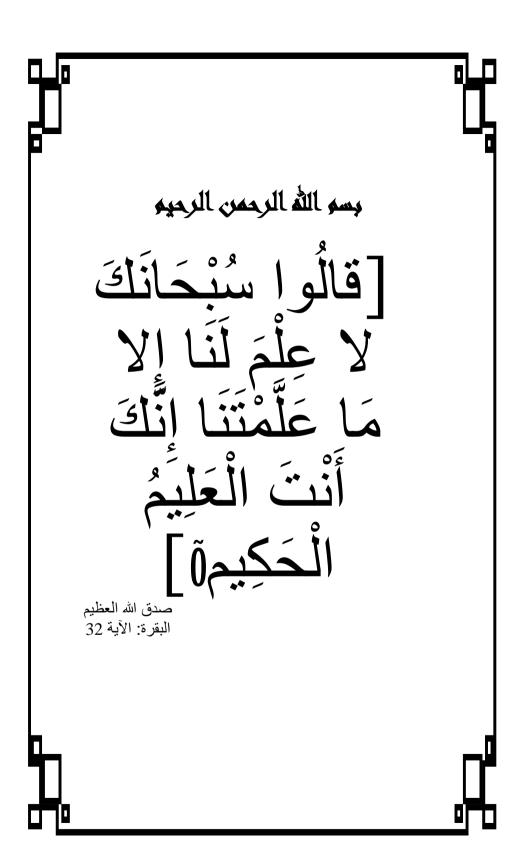
Environmental Studies of Water Quality and Its Effect on Fish of Some Farms in Sharkia and Kafr El-Sheikh Governorates

By Nadia Nazmy Bassuny Abd El-Hamed

B.Sc. Science (Zoology), Tanta University, 1992

Master in Environmental Sci., Ain Shams University, 2009

A Thesis Submitted in Partial Fulfillment


of

The Requirements for the Doctor of Philosophy Degree

In

Environmental Science

Department of Environmental Basic Science
Institute of Environmental Studies & Research
Ain Shams University

ACKNOWLEDGMENT

First of all, thanks to **ALLAH** for everything. I present my deep thanks and invocations to greater "**ALLAH**" for his blessed assistance as to the completion of this work.

My sincere thanks and deep gratitude are to **Prof. Dr. Abd El- Halim A. .Saad**, professor of Aquatic Ecology, Department of Zoology, Faculty of Science, Ain Shams University for his supervision, valuable guidance, continuous encouragement, reviewing the manuscript and providing useful comments and suggestions for presentation of the work.

Deep thanks and gratitude are extended to **Prof. Dr .Ahmed S. Abdel-Gawad,** professor of Fish Production, head of Fish Biology and Ecology department, Central Laboratory for Aquaculture Research (CLAR) ,Abbassa ,Abo-Hammad ,Sharkia, for his supervision, proposing this research, his scientific support, facilitate any obstacle ,reviewing the manuscript and his continuous advice.

Many thanks are to **Dr. Gamal El-Azazy**, Assistant Prof. of Fish Economic, the manager of Abbassa fish production farm, **Dr. Neima Abdel-Fattah**, **Dr. Mona Hamed and Amany Ahmed**, Central Laboratory for Aquaculture Research (CLAR) ,Abbassa ,Abo-Hammad ,Sharkia, for their great assistance.

I wish to express my sincere gratitude to **Eng.Mohamed El-Nagar** the manager of El-Khashaa fish farm, General Authority for Fish Resources Development (GAFRD), for his valuable support throughout the carrying out of this work.

Finally, I would like to express my deepest thanks to my husband, my father, my mother and my daughters Nada and Shaza for their help and encouragement, and also every one helped me to complete this work in the final form.

ABSTRACT

Monitoring of water quality is very important, where it is the main factor affecting the cultured fish. So, the present study investigated the quality of drainage water sources and their impacts on the quality of water and fish reared in two different farms at Al-khashaa, kafr El-Sheikh governorate and at Abbassa, Sharkia governorate, Egypt. Water and fish samples were taken monthly during 2011 fish farming season, to evaluate the physico-chemical and biological characteristics and heavy metals distribution in water and fish organs (muscles ,gills and liver).

The obtained results indicated significant difference between the water of two farms, particularly in their physical and chemical characteristic (water temperature, transparency, pH, DO, NH₃,NO₂,NO₃, total alkalinity, total hardness and phosphate). The levels of most parameters increased in ponds and outlet, but decreased at the inlet (drains). Heavy metals varied depending upon the organ, location and the month of sampling. Also, the order of occurrence of heavy metals in water ranked at the following order, Fe > Zn > Cu>Cd > Pb at Al-Khashaa farm, but at Abbassa farm it was Fe > Zn > Cu>Pb>Cd, while they were found in muscles and gills as Zn> Fe> Cu > Pb > Cd at Al- Khashaa fish farm, but in muscles, gills and liver tissues at Abbassa fish farm were Fe> Zn > Cu > Pb>Cd. The levels of heavy metals exceeded the permissible limits according WHO (1989), in gills and liver, but in muscles did not exceed the permissible limits, except Fe. Comparison of the values of condition factor (K) and hepato-somatic index (HSI) of the two fish farms indicated that fish of Abbassa ponds was the best condition. In the present study phytoplankton was represented by four groups namely Chlorophyceae, Cyanophyceae, Bacillariophyceae and Euglenophyceae,

where Chlorophyceac dominated over other groups of phytoplankton. Zooplankton was found in four groups Rotifera, Copepoda, Ostracoda and Cladocera . Rotifera and Cladocera were the dominant groups over other groups. Results indicated that the drainage water has a great effect on physical, chemical and biological characteristics of fish farms. Also, the fish farms effluents effect on the surrounding water.

CONTENTS

	page
ABSTRACT	
1- INTRODUCTION	1
2-LITERATURE REVIEW	5
3-MATERIALS AND METHODS.	22
3.1. Study area.	22
3.2. The sampling programm	22
3.3. Sampling methods.	26
3.4. Water analysis.	27
3.4.1. Physical and chemical parameters	27
3.5. Fish analysis	28
3.5.1. Heavy metals	28
3.5.2. Growth parameters	28
3 .6. Biological studies	29
3.6.1. Chlorophyll "a"	29
3.6.2. Phytoplankton and zooplankton	29
3.7. Statistical analysis	30
4. RESULTS	31
4.1. Water analysis	31
4.1.1. Physical and chemical parameters	31
4.1.1.1. Water temperature	31
4.1.1.2. Hydrogen ion concentration	35
4.1.1.3. Transparency.	35
4.1.1.4. Dissolved oxygen	39
4.1.1.5. Total alkalinity	39
4.1.1.6. Total hardness	41
4.1.1.7. Nitrite	44

	page
4.1.1.8. Nitrate	44
4.1.1.9. Ammonia	47
4.1.1.10. Orthophosphate	47
4.1.2 . Heavy metals	50
4.1.3. Correlation between water parameters	60
4.2. Fish analysis	62
4.2.1. Heavy metals	62
4.2.2.Correlation between water and fish parameters	76
4.2.3. Growth parameters	80
4.3. Biological studies	83
4.3.1.Chlorophyll "a"	83
4.3.2. Phytoplankton	86
4.3.2.1. Community composition	86
4.4.2.2 Distribution and monthly variations of total	87
phytoplankton	87
4.3.2.3. Distribution and variations of common groups	90
4.3.2.3.1. Chlorophyceae	90
4.3.2.3.2. Cyanophyceae	90
4.3.2.3.3.Bacillariophyceae	90
4.3.2.3.4. Euglenophyceae	92
4.3.3. Zooplankton	94
4.3.3.1. Community composition	94
4.3.3.2. Distribution and monthly variations of total	95
zooplankton	93
4.3.3.3. Distribution and variations of common groups	98
4.3.3.3.1. Rotifera	98
4.3.3.3.2. Copepoda	98

	page
4.3.3.3. Ostracoda	98
4.3.3.3.4. Cladocera	100
5- DISCUSSION	102
6- SUMMARY.	131
7- CONCLUSION	139
8- REFERENCES.	
9- ARABIC SUMMARY	1

LIST OF TABLES

		page
Table (1):	Spatial variations (means \pm standard deviations) of	32
	some physico-chemical parameter of water samples	
	collected from Al- khashaa and Abbassa fish farms.	
Table (2):	Monthly variations (means \pm standard deviations) of	33
	some physico-chemical parameters of water samples	
	collected from Al- Khashaa and Abbassa fish farms.	
Table (2):	Cont :	34
Table (3):	Spatial variations (means+ standard deviations) of	51
	heavy metals concentrations (ppm) of water samples	
	collected from Al- khashaa and Abbassa fish farms.	
Table (4):	Monthly variations (means \pm standard deviations) of	52
	heavy metals concentrations (ppm) of water samples	
	collected from Al-Khashaa and Abbassa fish farms.	
Table (5):	Pearson correlation coefficient (r-value) between	61
	water parameters in Al-khashaa and Abbassa farms.	
Table (6):	Spatial variations (means \pm standard deviations) of	63
	heavy metals concentrations (ppm) in muscles, gills	
	and liver of Oreochromis niloticus in different sites of	
	Al- Khashaa and Abbassa fish farms.	
Table (7):	Seasonal variations (means \pm standard deviations) of	64
	heavy metals concentrations (ppm) in muscles, gills	
	and liver of Oreochromis niloticus in Al- Khashaa	
	and Abbassa fish farms.	
Table (7):	Cont :	65
Table (8):	Pearson correlation coefficient (r = value) between	77
	water parameters and heavy metal concentration in	
	•	

		page
	muscles of Oreochromis niloticus in Al- khashaa and	
	Abbassa fish farms.	
Table (9):	Pearson correlation coefficient (r = value) between	79
	water parameters and heavy metal concentration in	
	gills of Oreochromis niloticus in Al- khashaa and	
	Abbassa fish farms.	
Table(10):	Pearson correlation coefficient (r = value) between	79
	water parameters and heavy metal concentration in	
	liver of Oreochromis niloticus in Al- khashaa and	
	Abbassa fish farms.	
Table(11):	Seasonal variations (means \pm standard deviations) of	81
	condition factor (K) and hepato – somatic index (HIS)	
	of Oreochromis niloticus collected from Al- khashaa	
	and Abbassa fish ponds.	
Table (12):	Spatial variations (means ± standard deviations) of	81
	condition factor (K) and heapto-Somatic index (HSI)	
	of Oreochromis niloticus collected from Al- khashaa	
	and Abbassa fish ponds.	
Table(13):	Spatial variations (means+ standard deviations) of	84
	chlorophyll concentration (µg/l) of water in	
	Al- khashaa and Abbassa fish farms.	
Table(14):	Monthly variations (means \pm standard deviations) of	84
	chlorophyll concentration (µg/l) of water in	
	Al- Khashaa and Abbassa fish farms.	
Table(15):	Standing crop of total phytoplankton (org/l 10 ³) in	88
	water samples collected from Al- khashaa and	
	Abbassa fish farms during different months.	
•	•	

		page
Table (16):	Standing crop of different phytoplankton (org/l x10 ³)	88
	and their percentage frequency to total phytoplankton	
	in Al-Khashaa and Abbassa fish farms.	
Table (17):	Monthly variations of phytoplankton groups (org/l x	91
	10 ³) in water samples collected from Al- Khashaa fish	
	farm.	
Table(18):	Monthly variations of phytoplankton groups (org/l x	91
	103) in water samples collected from Abbassa fish	
	farm.	
Table(19):	Standing crop of total zooplankton (org/l) in water	96
	samples collected from Al- Khashaa and Abbassa fish	
	farms during different months.	
Table(20):	Standing crop of different zooplankton groups (org/l)	96
	and their percentage frequency to total zooplankton in	
	Al- khashaa and Abbassa fish farms.	
Table (21):	Monthly variations of zooplankton groups (org/l) in	99
	water samples collected from Al- Khashaa fish farm.	
Table (22):	Monthly variations of zooplankton groups (org/l) in	99
	water samples collected from Abbassa fish farm.	

LIST OF FIGURES

		page
Figure (1):	Distribution of the main aquaculture production	23
	sites in Egypt showing the two studied locations	
	(Google Egypt map, 2010)	
	1-Al-khashaa fish farm,Kafr El-Shiekh,	
	2- Abbassa fish farm, Sharkia	
Figure (2):	Map illustrating the different sites of the study in	24
	Al-khashaa fish farm as shown by Google earth	
	2013.	
Figure (3):	Map illustrating the different sites of the study in	25
	Abbassa fish farm as shown by Google earth 2013.	
Figure (4):	Monthly and spatial variations in temperature of	36
	surface water in (a) Al-khashaa and (b)Abbassa	
	fish farms.	
Figure (5):	Monthly and spatial variations in hydrogen ion	37
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (6):	Monthly and spatial variations in transparency of	38
	water in (a) Al-Khashaa and (b)Abbassa fish farms.	
Figure(7):	Monthly and spatial variations in dissolved oxygen	40
	of water in (a) Al-khashaa and (b)Abbassa fish	
	farms.	
Figure (8):	Monthly and spatial variations in total alkalinity	42
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (9):	Monthly and spatial variations in total hardness	43
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms	
Figure (10):	Monthly and spatial variations in nitrite	45

		page
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (11):	Monthly and spatial variations in nitrate	46
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (12):	Monthly and spatial variations in ammonia	48
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (13):	Monthly and spatial variations in orthophosphate	49
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure(14):	Monthly and spatial variations in copper	54
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (15):	Monthly and spatial variations in iron	55
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (16):	Monthly and spatial variations in zinc	57
8	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (17):	Monthly and spatial variations in lead	58
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (18):	Monthly and spatial variations in cadmium	59
	concentration of water in(a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (19):	Seasonal and spatial variations in copper	67
	concentration (ppm) in muscles of <i>Oreochromis</i>	
	niloticus in Al-khashaa and Abbassa fish farms.	

		page
Figure (20)	Seasonal and spatial variations in copper	67
1-1902-0 (-0)	concentration (ppm) in gills of Oreochromis	
	niloticus in Al-khashaa and Abbassa fish farms.	
Figure (21):	Seasonal and spatial variations in copper	68
	concentration (ppm) in liver of <i>Oreochromis</i>	
	niloticus in Al-khashaa and Abbassa fish farms.	
Figure (22):	Seasonal and spatial variations in iron	68
	concentration (ppm) in muscles of <i>Oreochromis</i>	
	niloticus in Al-khashaa and Abbassa fish farms.	
Figure (23):	Seasonal and spatial variations in iron	69
	concentration (ppm) in gills of Oreochromis	
	niloticus in Al-khashaa and Abbassa fish farms.	
Figure (24):	Seasonal and spatial variations in iron	69
	concentration (ppm) in liver of Oreochromis	
	niloticus in Al-khashaa and Abbassa fish farm.	
Figure (25):	Seasonal and spatial variations in zinc	71
	concentration (ppm) in muscles of Oreochromis	
	niloticus in Al-khashaa and Abbassa fish farms.	
Figure (26):	Seasonal and spatial variations in zinc	71
	concentration (ppm) in gills of Oreochromis	
	niloticus in Al-khashaa and Abbassa fish farms.	
Figure (27):	Seasonal and spatial variations in zinc	72
	concentration (ppm) in liver of Oreochromis	
	niloticus in Al-khashaa and Abbassa fish farm.	
Figure (28):	Seasonal and spatial variations in lead	72
	concentration (ppm) in muscles of Oreochromis	
	niloticus in Al-khashaa and Abbassa fish farms	
Figure (29):	Seasonal and spatial variations in lead	73
	concentration (ppm) in gills of Oreochromis	

		page
	niloticus in Al-khashaa and Abbassa fish farms.	
Figure (30):	Seasonal and spatial variations of lead	73
	concentration (ppm) in liver of Oreochromis	
	niloticus in Al-khashaa and Abbassa farms.	
Figure (31):	Seasonal and spatial variations in cadmium	75
	concentration (ppm) in gills of Oreochromis	
	niloticus in Al-khashaa and Abbassa fish farms.	
Figure (32):	Seasonal and spatial variations in cadmium	75
	concentration (ppm) in liver of Oreochromis	
	niloticus in Al-khashaa and Abbassa fish farms.	
Figure (33):	Seasonal variations in condition factor(K) of	82
	Oreochromis niloticus in Al-khashaa and Abbassa	
	fish ponds.	
Figure (34):	Seasonal variations in hepato- somatic index (HSI)	82
	of Oreochromis niloticus in Al-khashaa and	
	Abbassa fish ponds.	
Figure (35):	Monthly and spatial variation in chlorophyll	85
	concentration of water in (a) Al-khashaa and	
	(b)Abbassa fish farms.	
Figure (36):	Community composition of total phytoplankton in	86
	Al-Khashaa fish farm.	
Figure (37):	Community composition of total phytoplankton in	87
	Abbassa fish farm.	
Figure (38):	Standing crop of total phytoplankton in Al-Khashaa	89
	fish farm during different months.	
Figure (39):	Standing crop of total phytoplankton in Abbassa	89
	fish farm during different months.	
Figure (40):	Monthly variations of phytoplankton groups (org/l	92
	$x = 10^3$) in water samples collected from	
	,	