Fetal Weight Prediction by Thigh Volume Measurement with Three-Dimensional Ultrasound

Chesis

Submitted for Partial Fulfillment of Master Degree In **Obstetrics and Gynecology**

*By*Suzan Jomaa Mohammed Modade

M.B.,B.CH.(2006) Misr University for Science and Technology Resident at El-Shifa Hospital

Under Supervision of

Prof. Dr. Ali Farid Mohamed Ali

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain-Shams University

Dr. Ahmed M. Awadallah

Lecturer of Obstetrics and Gynecology Faculty of Medicine – Ain-Shams University

> Faculty of Medicine Ain Shams University 2013

First and foremost, I feel always indebted to Allah, the Most Merciful, Who gives me power to accomplish this work.

I would like to express my deepest appreciation and sincere gratitude to **Prof. Dr. Ali Farid Mohamed Ali,**Professor of Obstetrics and Gynecology, Faculty of Medicine – Ain-Shams University, for his sincere help, constant encouragement, constructive criticism, and valuable guidance, I was truly honoured to work under his supervision.

I wish also to express my great gratitude and utmost appreciation to **Dr. Ahmed M. Awadallah**, Lecturer of Obstetrics and Gynecology, Faculty of Medicine – Ain-Shams University, for his valuable suggestions and instructions during the progress of this work.

I can't also forget to thank also **Dr. Loay Abou El-Enin**, for his great efforts and support in the practical part of this study

Suzan Jomaa Mohammed Modade

I would like to dedicate this thesis to my Husband for supporting me and pushing me forward all the time.

Special dedication to my two sons,

Ahmed and Qusai

for their support, love and care

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	
List of Figures	
Protocol	
Introduction	1
Aim of the Work	4
Review of Literature	
- Fetal growth	5
- Ultrasound and Fetal Weight Estimation.	44
- Volume Measurements	68
Subjects and Methods	86
Results	105
Discussion	129
Summary	143
Conclusion	147
Recommendations	148
References	149
Arabic Summary	<u> </u>

List of Abbreviations

AC : Abdominal circumference
AFI : Amniotic fluid index
AFVs : Amniotic fluid volume
ANOVA : Analysis of variance

ATD : Abdominal transverse diameter

BMI : Body mass index
BPD : Biparietal diameter
DM : Diabetes mellitus

EDD : Expected day of delivery
 EFBW : Estimated fetal body weight
 EFW : Estimated fetal weight
 FGR : Fetal growth retardation

FL : Femur length GA : Gestational age

HAPO : Hyperglycemia and Adverse Pregnancy Outcomes

HC : Head circumference **IgG** : Immunoglobulin G

IUGR : Intra uterine growth retardation

LBW : Low birth weight

LGA : Large size for gestational age

LMP : Last menstrual period

MHz : Mega Hertz

MTh vol. : Modified thigh volume NPV : Negative predictive value

PI : Pulsatility index

PPV : Positive predictive value
PSV : Peak systolic velocity
SD : Standard deviation

SGA : Small for gestational age

SPSS : Statistical Package for Social Science

UA : Umbilical artery

VOCAL : Virtual Organ Computer-aided Analysis

2D : Two-dimensional 3D : Three-dimensional

List of Tables

Table No.	Title	Page No.
Table (1):	Different ultrasound regression formulae for estimating fetal weight	
Table (2):	Univariate regression analysis with the individual volumetric parameters as independent and actual birth weight as dependent variables, respectively	S S
Table (3):	Demographic description as regards Maternal Age (in years), Gestational Age (in weeks) and Parity (in number)	e
Table (4):	Actual Birth Weight in included women as regards Maternal Age, Gestationa Age, Parity and Body Mass Index (BMI)	1
Table (5):	Demographic Comparison between the studied groups as regards fetal gender and previous cesarean section.	r
Table (6):	Demographic Description as regards perinatal Vital signs, laboratory findings and sonographic data between the participants	S e
Table (7):	Demographic Comparison between the studied groups as regards Suggestive Gestational Conditions affecting feta outcome.	e 1
Table (8):	Correlation of Fetal sex with the 2d and 3d ultrasound estimated fetal weigh (EFW) and the Actual body weight	t
Table (9):	Correlation of Maternal Hypertension with the 2D and 3D ultrasound estimated fetal weight (EFW) and the Actual body weight.	1 V

List of Tables (Cont...)

Table No.	Title	Page No.
Table (10):	Correlation of Maternal Gestational DM with the 2D and 3D ultrasound estimated fetal weight (EFW) and the Actual body weight	1 7
Table (11):	Analysis of Variance (ANOVA) as regards Actual birth weight and the Demographic data in studied group	2
Table (12):	Analysis of Variance (ANOVA) as regards 2d ultrasound estimated feta weight (EFW) and the Demographic data in studied group.	l 1
Table (13):	Analysis of Variance (ANOVA) as regards 3d ultrasound estimated feta weight (EFW) and the Demographic data in studied group.	l a
Table (14):	Demographic Description of the actual fetal body weight and its distribution among the studied fetal outcome	ı
Table (15):	Categorical analysis (Chi-Square) of the percent of the absolute error in the Estimated Fetal Weight (in grams) by 2D ultrasound among the studied fetal group	e)
Table (16):	Categorical analysis (Chi-Square) of the percent of the absolute error in the Estimated Fetal Weight (in grams) by 3D ultrasound among the studied fetal group	e)
Table (17):	Analysis of Variance (ANOVA) of the difference of absolute errors in the measurements of the Estimated Feta Weight of the 2D and 3D ultrasound	e I

List of Tables (Cont...)

Table No.	Title	Page No.
Table (18):	Comparison of the studied group as regards the absolute error of both the 2D and 3D ultrasound Estimated Feta Weight.) 1
Table (19):	Correlation between the actual fetal body weight (in grams) and the Estimated Fetal Weight by both 2D and 3D ultrasound and the Modified thigh volume of the fetal outcome.	d) 1
Table (20):	Comparison between the studied group as regards 2D and 3D ultrasound estimated fetal weight (EFW) and the Actual birth weight.	d e
Table (21):	Comparison of the studied group in the different ranges of actual body weigh (in grams) and the Correlation as regards these different ranges of the Actual feta body weight (in grams) and the EFW by 2D and 3D ultrasound.	t s 1

List of Figures

Figure No.	Title	Page No.
Figure (1):	Fetal growth and weight among difficategories	
Figure (2):	Normal fetal growth curves and percer	ntiles 9
Figure (3):	The principal causes and most conconditions that are associated with growth restriction	fetal
Figure (4):	Picture of macrosomic baby	30
Figure (5):	Different formulae used for estimation birth weight by ultrasound	
Figure (6):	Abdominal circumference (AC)	52
Figure (7):	Femur length (FL)	52
Figure (8):	Bi-Parietal diameter (BPD)	53
Figure (9):	Sonographic views of the cross sectarea of the thigh at right angles to the axis in the proximal, maximum and portions	long distal
Figure (10):	Bi-Parietal diameter (BPD)	91
Figure (11):	Abdominal circumference (AC)	93
Figure (12):	Femur length (FL)	94
Figure (13):	General Electric; Voluson E6	95
Figure (14):	Femur length and its transaxial plane.	96
Figure (15):	3D of thigh volume	96
Figure (16):	Measurement of thigh volume at proportion of femur diaphysis	
Figure (17):	Measurement of thigh volume at more portion of femur diaphysis	

List of Figures (cont...)

Figure No.	Title	Page No.
Figure (18):	Measurement of thigh volume at portion of femur diaphysis	
Figure (19):	Percentile distribution of fetal outco regard gender	
Figure (20):	Percentile distribution of past histories previous surgical deliveries.	
Figure (21):	The mean \pm (SD) of the vital data laboratory results collected from participated in the study	atients
Figure (22):	The mean \pm (SD) of the Modified Volume collected by 3D U/S from participated in the study	atients
Figure (23):	Presence of Suggestive Gesta Conditions affecting fetal outcome	
Figure (24):	Correlation of Fetal sex with the 2d a ultrasound estimated fetal weight (and the Actual body weight	EFW)
Figure (25):	Correlation of Maternal Hypertension the 2D and 3D ultrasound estimated weight (EFW) and the Actual body w	l fetal
Figure (26):	Correlation of Maternal Gestational DM the 2d and 3d ultrasound estimated weight (EFW) and the Actual body weight	l fetal
Figure (27):	Analysis of Variance (ANOVA) as re Actual birth weight and the Demog data in studied group.	raphic
Figure (28):	Analysis of Variance (ANOVA) as re 2D ultrasound estimated fetal weigh the Demographic data in studied grou	nt and

List of Figures (Cont...)

Figure No.	Title	Page No.
Figure (29):	Analysis of Variance (ANOVA) as regarded ultrasound estimated fetal w (EFW) and the Demographic datastudied group.	eight a in
Figure (30):	Demographic Description of the a fetal body weight and its distrib among the studied fetal outcome	ution
Figure (31):	Categorical analysis (Chi-Square) of percent of the absolute error in Estimated Fetal Weight (in grams) by ultrasound among the studied fetal gro	the y 2D
Figure (32):	Categorical analysis (Chi-Square) of percent of the absolute error in Estimated Fetal Weight (in grams) by ultrasound among the studied fetal grounds.	the y 3D
Figure (33):	Analysis of Variance (ANOVA) of difference of absolute errors in measurements of the Estimated Weight (by grams) of the 2D and ultrasound	the Fetal l 3D
Figure (34):	Comparison of the studied group as reg the absolute error of both the 2D and ultrasound Estimated Fetal Weight. 12	d 3D
Figure (35):	Correlation between the actual fetal weight (in grams) and the Estimated Weight by 2D ultrasound	Fetal

List of Figures (Cont...)

Figure No.	Title	Page No.
Figure (36):	Correlation between the actual fetal weight (in grams) and the Modified volume of the fetal outcome by ultrasound.	thigh 3D
Figure (37):	Comparison between the studied groregards 2D and 3D ultrasound estir fetal weight (EFW) and the Actual weight.	nated birth
Figure (38):	Comparison of the studied group in different ranges of actual body weight grams) and the Correlation as regards different ranges of the Actual fetal weight (in grams) and the EFW by 2I 3D ultrasound.	nt (in these body D and

Introduction

stimation of fetal weight is essential in our daily obstetric practice, especially at third trimester for women with potential risks of intra uterine growth retardation (IUGR) or macrosomia. It guides obstetricians to make up their decisions as regard time and mode of delivery to guard against complications of low birth weight and macrosomic babies during labor and puerperium (*Owen et al.*, *2003*, *Zhang et al.*, *2012*).

The perinatal complications associated with low birth weight are most often attributable to fetal prematurity, but may sometimes also arise as the result of intrauterine growth restriction (*Langer et al.*, 1991). For macrosomic fetuses, potential complications associated with delivery include shoulder dystocia, brachial plexus injuries, bony injuries and intrapartum asphyxia, as well as maternal risks that include birth canal injuries, pelvic floor injuries and postpartum hemorrhage (*Jolly et al.*, 2003).

Tactile assessment of fetal size, also referred to as clinical palpation or Leopold maneuvers, is considered the oldest technique for assessing fetal weight. It involves manual assessment of fetal size by the obstetricians (*Horta et al.*, 1997). Worldwide, this method is used extensively because it is both convenient and virtually costless; however, it is a subjective

method associated with notable predictive errors (Saqib et al., 2008).

Initial attempts to estimate fetal weight by ultrasound consisted of individual fetal measurements such as biparietal diameter (BPD) or abdominal circumference (AC), and femur length (FL), accuracy of estimated fetal weight is improved when multiple fetal measurements are used. The simplest methods that give reasonably accurate results are based on two measurements, AC and BpD or AC and FL (Song et al., 2000).

Isobe (2004) derived a formula from only thigh measurements using conventional two-dimensional ultrasound. The newly derived formula was quite simple, involving only two thigh parameters without the need for head measurement.

Estimated fetal body weight (EFBW) is needed especially when head measurement is impossible whenever the fetal head is positioned low in the pelvic brim. A convenient method for estimating fetal body weight without head measurement was thus required (*Saqib et al.*, 2008).

The majority of the commonly used formulas for EFBW include measurements of the head circumference, abdominal circumference and femur length, either alone or in combination (Saqib et al., 2008).

The value of the fetal thigh circumference measurement using Isobe's formula in addition to the head, abdominal circumference and femur length measurements showed a

significant correlation with the actual birth weight as in 90% of cases EFBW was within 10% of the actual birth weight (*Dudley*, 2005, Saqib et al., 2008).

The use of three-dimensional ultrasound was found useful for fetal weight estimation by using limb circumferences, upper arm volumes, and thigh volumes (*Lee et al.*, 2009).

Three-dimensional ultrasound accuracy in volumetry has been validated in many organ system *in vivo* and *vitro* as lungheart and hepatic volumes. Meanwhile limb volume as a soft tissue parameter was related to both fetal growth and nutritional status (*Peralta et al.*, 2006).

The fetal liver makes up most of the abdomen, as measured by means of abdominal circumference. Measuring of fetal hepatic volume to identify growth restriction, since both the human and the rats have severely depleted hepatic glycogen stores associated with growth restriction (*Bioto et al.*, 2002).

Song et al. (2000) found that modified thigh Volume measurements using three cross-sectional images of femur by 3D U/S were correlated strongly with birth weight when using linear and polynomial regression and calculated by a new best-fit formula.

Fetal birth weight (in grams) = $165.32 + 28.78 \times \text{modified thigh}$ volume (ml).