DETECTION OF GLUTATHIONE-S-TRANSFERASE NULL GENOTYPES IN ACUTE AND CHRONIC MYELOID LEUKAEMIAS

Thesis
Submitted for partial fulfillment of master degree (M.Sc.) in
Clinical and Chemical Pathology

By
Maha Hamdi Abd El Meguid El Sissy
(M.B.,B.CH.)

Supervisors

Prof. Dr. Laila Abd El Rahman Hegazy

Professor of Clinical and Chemical Pathology
Faculty of medicine
Cairo University

Dr. Asmaa Ahmed Abdel Aal

Lecturer of Clinical and Chemical Pathology
Faculty of medicine
Cairo University

Faculty of Medicine Cairo University 2008

بسم الله الرحمن الرحيم

"قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم"

صدق الله العظيم (سورة البقرة الايه رقم ٣٢)

Acknowledgment

Acknowledgement

First of all, I would like to thank God for his grace and mercy and for giving me the effort to complete this work.

I would like to express my deepest gratitude and greatest respect to **Professor Dr. Laila Abd El Rahman Hegazy**, Professor of Clinical and Chemical Pathology, Cairo University under whose supervision I had the honor and pleasure to proceed with this work. Her constant guidance, encouragement and foresight made all the difference.

I would like to express my sincere thanks to **Dr**. **Asmaa Ahmed Abdel Aal**, lecturer of Clinical and Chemical Pathology, Cairo University for her continuous guidance encouragement, creativity and offering me years of technical experience.

Special thanks goes to all patients attending the oncology clinic of Kasr El-Aini Hospital, Cairo University, for their help and cooperation without which this work could not be possible.

And last-but, by no means least, I would like to thank my mother, my dear husband and my little son for all their patience, love, support and sacrifice which made this work possible.

Contents

page

List of Abbreviations
List of Tables
List of Figures
I- Introduction and Aim of the Study
II- Review of Literature

Chapter 1:Glutathione-S-Transferase	3
Classes	3
Class alpha	5
Class Mu	5
Class Pi	6
Class theta	7
Class Zeta	7
Class Omega	7
Structural properties	4
Important classes	5
Distribution	8
Functions	9
Glutathione-S-transferase in chronic myeloid leukaemia	10
Glutathione-S-transferase in acute myeloid leukaemia	11
Glutathione-S-transferase in other diseases	12
Glutathione-S-transferase and smoking	13
Methods of determination	14
Enzymatic activity assay	14
Timed-Resolved Immunoflurometric Assay	15
Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PGAGE) and High Performance Liquid Chromatography(HPLC)	15
Immunoassay.	17
Chapter 2: Acute Myeloid Leukaemia	19
Definition	19
Incidence	19

Predisposing factors	20
Leukaemogenesis	22
Classifications	26
French-American-British (FAB) classification	26
Cytochemical classification	29
Immunophenotyping classification	29
World Health Organization (WHO) classification	32
Clinicopathological syndrome	33
Minimally differentiated (FAB-M0)	33
AML without maturation (FAB-M1)	33
AML with maturation and with translocation t(8;21)(q22;q22) (FAB-M2)	34
Acute promyelocytic leukaemia (FAB-M3)	35
Acute myelomonocytic leukaemia (FAB-M4)	36
Acute monocytic leukaemia (FAB-M5)	37
Erythroleukaemia (FAB-M6)	38
Acute megakaryocytic leukaemia (FAB-M7)	41
Other clinicopathologic syndromes	42
Prognosis of AML	48
Chapter 3: Chronic Myeloid Leukaemia	51
Introduction	51
Incidence	52
Aetiology and epidemiology	53
The WHO classification of myeloproliferative neoplasms	54
Cytokinetics	54
Cytogenetics	56
Molecular biology	57
Clinical features of CML	58
Chronic myelogenous leukaemia	58
Chronic phase CML	58
Accelerated phase CML	71

Blast crisis CML	71
Special clinical features	73
BCR-ABL positive thrombocythaemia	73
Minor BCR breakpoint positive CML	73
Neutrophilic chronic myeloid leukaemia	74
Hyperleukocytosis	74
Differential diagnosis	75
Prognosis of CML	83
III-Subjects and Method	85
IV- Results	93
V- Discussion	118
VI- Summary	131
VII- References	133
VIII- Arabic Summary	168

	List Of Abbreviation
A CML	Atypical CML.
ALL	Acute lymphoblastic leukaemia
AML	Acute myeloid leukaemia.
ANLL	Acute non lymphoblastic leukaemia
AP	Accelerated phase.
APL	Acute promyelocytic leukaemia.
ASCT	Autologus stem cell transplantation.
ATRA	All trans retinoic acid
AUL	Acute undifferentiated leukaemia.
ВС	Blastic crisis.
ВМ	Bone marrow
ВС	Blastic crisis.
BCR	Breakpoint cluster region.
Ca	Calcuim.
CAE	Chloroacetate esterase.
CALLA	Common acute lymphoblastic leukaemic antigen
CBC	Complete blood count.
CD	Cluster of differentiation
CDNB	1chloro 2, 4 dinitrobenzene.
CEL	Chronic eosinophilic leukaemia.
CFU	Colony forming unit.
CFU GEMM	Colony forming unit, granulocyte, erythroid &myeloid
CFU GM	Colony forming unit, granulocyte & monocyte
CHR	Complete haematological remission.
CI	Confidence interval.
CIMF	Chronic idiopathic myelofibrosis
CMML	Chronic myelomonocytic leukaemia
CMPD -U	Unclassified chronic myeloproliferative disorders
CNL	Chronic neutrophilic leukaemia.
CR	Complete remission.
Cyt	Cytoplasmic.
DAV	Doxorubucin vincristine .
DIC	Dissiminated intra vascular coagulopathy
DLCL	Diffuse large B cell lymphoma .
DNA	Deoxy ribonucleic acid.
ECM	Extracellular matrix

ELISA	Enzyme linked immunosorbant assay.
EM	Electron microscope.
ET	Essential thrombocythaemia.
FAB	French American British
FISH	Fluorescence In Situ Hybridization
FLT3	Fms like tyrosine kinase 3 receptor.
G CSF	Granulocyte colony stimulating factor.
GM CSF	Granulocyte
GST	Glutathione S Transferase
GSTM1	Glutathione s Transferase-Mu
GSTT1	Glutathione s Transferase-Theta
Hct	Haematocrit value.
HES	Hyper eosinophilic syndrome
HGFs	Haematopoietic growth factors.
HLA	Human leukocyte antigen.
HPLC	High performance liquid chromatography.
lg	Immunoglobulin.
IL1	Interleukin one
IL4	Interleukin four
IL5	Interleukin five
IL6	Interleukin six
IL7	Interleukin seven
INF-α	Interferon-α.
IR	Incomplete remission.
JCML	Juvenille CML.
LDH	Lactate dehydrogenase.
LM	Light microscope.
MCD	Mast cell disease.
MCS	Monocyte colony stimulating factor
MDS	Myelodysplastic syndrome.
Mg Cl	Magnesuim chloride.
MMM	Myelosclerosis with myeloid metaplasia
MPD	Myeloproliferative disorders.
MPO	Myeloperoxidase
MRD	Minimal residual disease.
NAP	Neutrophil alkaline phosphatase
NEC	Non erythroid cell.

NK	Natural killer.
NSE	Non specific esterase.
OR	Odd's ratio.
PAH	Polycyclic aromatic hydrocarbons.
PAS	Periodic acid Schiff.
PB	Peripheral blood
PCR	Polymerase chain reaction.
Ph. Chromosome	Philadelphia chromosome
PV	Polycythaemia Vera.
RB	Retinoblastoma.
RBC	Red blood cells.
ROS	Reactive oxygen species.
SBB	Sudan black B.
SCF	Stem cell factor.
SD	Standard deviation.
SDS PGAGE	Soduim Diacyl Sulphate
	Polyacrylamide Gel Electrophoresis.
Sm	Surface membrane.
SPSS	Statistical Package for the Social Science.
SWOG	South west oncology group
t AML	Therapy related AML.
Taq	Thermus aquaticus
TdT	Terminal deoxy nucleotydyl transferase.
UAL	Undifferentiated acute leukaemia.
WBC	White blood cells
WT1	Wilm's tumour gene.

List of Tables

Table 1: Conditions predisposing to the development of acute myeloidleukeamia	21
Table 2: Morphologic FAB classification of AML	28
Table 3: Immunophenoytping markers in AML	30
Table 4: The WHO classification of AML	32
Table 5: Score for biphenptypic leukaemia	43
Table 6: Prognostic implications of chromosome findings in AML	48
Table 7: Criteria for the blast crisis of CML published by the WHO, 2002	71
Table 8: The main chronic myeloproliferative disorders	78
Table 9:The 2008 World Health Organization classification scheme for myeloid neoplasms	84
Table 10: The individual laboratory data of the AML patients included in the study	99
Table 11: The individual laboratory data of the CML patients included in the study	100
Table 12: The individual laboratory data of the control cases included in the study	101

Table 13: Statistical analysis of age in relation to GSTT1 & GSTM1 Genotypes	102
Table 14: Statistical analysis of sex in relation to GSTT1	104
& GSTM1 Genotypes	
Table 15: Statistical analysis of TLC and blasts in relation to	106
GSTT1 &GSTM1 genotypes	
Table 16: Frequency distribution in FAB typing of GSTT1 &	109
GSTM1 genotypes in AML cases	
Table 17: Statistical analysis of follow-up in relation to	111
GSTT1 & GSTM1 genotypes in AML patients	
Table 18: Risk estimate in AML cases	112
Table 19: Frequency distribution in typing of GSTT &	113
GSTMgenotypes in CML cases	
Table 20: Statistical analysis of follow-up in relation to	114
GSTT1 & GSTM1 genotypes in chronic phase of CML	
Table 21: Risk estimate in CML	115

List of Figures

	Page
Figure (1): Percentageof age distribution among T1 negative and	103
positive cases of the three studied groups	
Figure (2): Percentage of age distribution among M1 negative	103
and positive cases of the three studied groups	
Figure (3): Percentageof sex distribution among T1 negative and	105
positive cases of the three studied groups	
Figure (4): Percentage of sex distribution among M1 negative	105
and positive cases of the three studied groups	
Figure (5): WBCs median among T1 –ve and T1 +ve cases	107
Figure (6): WBCs median among M1 –ve and M1 +ve cases	107
Figure (7): Blast median among T1 –ve and T1 +ve cases	108
Figure (8): Blast median among M1 -ve and M1 +ve cases	108
Figure (9): Percentage of chronic and accelerated cases	113
among CML cases	
Figure (10): Percentage of FAB among T1 negative and	110
positive AML cases	
Figure (11): Percentage of FAB among M1 negative and	110
positive AML cases	
Figure (12): Percentageof complete remission and other	111
outcomes among AML cases	
F:igure (13): Percentage of complete remission and other	114
outcomes among CML cases	

Figure (14): Agarose gel electrophoresis showing genotypes analysis of GSTT1 (480bp) and GSTM1 (215bp) using multiplex PCR	116
Figure (15): Agarose gel electrophoresis showing genotypes analysis of GSTT1 (480bp) and GSTM1 (215bp) using multiplex PCR.	117

Abstract

Glutatione-S-transferases (GSTs) are xenobiotic metabolizing enzymes contributing to the detoxification of activating carcinogens as environmental pollutants, benzopyrenes and other polyaromatic hydrocarbons. Inherited differences in the capacity of these enzymes might be an important genetic factor leading to susceptibility to cancer.

Glutathione-S-transeferases (GSTs) have been implicated as susceptibility genes in this context for a number of cancers including hematological malignancies like AML – CML. Individuals carrying less efficient alleles of detoxifying genes, vary in their ability to metabolize carcinogens and hence to detoxify chemicals, leading to different risk in getting cancer...

Myloid leukaemias are heterogenous diseases which are subdivided into acute and chronic myeloid leukaeimas. Acute myeloid leukaemia is neoplastic proliferation in haematopoietic precursor cells, resulting in overgrowth of myeloblast and other immature myeloid cells. The malignant cells replace the bone marrow, circulate in the blood and may accumulate in other tissues.

Acute myeloid leukaemia (AML) in adults has a 20% 5-years disease-free survival, despite treatment with aggressive cytotoxic chemotherapy. For several decades AML has been characterized on the basis of morphology, special stain, cytogenetics, and cell surface markers. However, recent studies on molecular characterization of