

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠%. To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

BEHAVIOURS OF BUILDING MATERIALS FOR LINING TUNNELS CONSTRUCTED UNDERNEATH SALINE WATER

M. Sc. THESIS

Submitted to Mining and Minerals Engineering
Department of Faculty of Petroleum and Mining
Engineering of the Suez Canal University

by

Yousef Abdallah Yousef

B.S_c in Civil Engineering

Supervised by

Dr. F. A. Bassiouny Dr. Amin A Abdelrahman

Prof. in Mining and

Mineral Engineering

Department

Prof. in Mining and

Mineral Engineering

Department

Dr. Raafat A.H. Soliman

Lecturer in Mining and Mineral Engineering Department

Suez Canal University 2

1998

3

Acknowledgements

Many are those to whom I should express thanks in connection with the preparation of this thesis. In the first place, I wish to acknowledge the help which I have received from my supervisors and the head and the staff of the Mining and Mineral Engineering Department. In the second place, I am indebted to many of my professional friends who work at different places. The debt that owe to my family is more difficult to acknowledge.

At the beginning and at the end Praise be to Allah, Lord of the worlds. The Beneficent, the Merciful, Master and King of the Day of Judgment. And Peace be upon His last Prophet Muhammad.

ABSTRACT

BEHAVIOURS OF BUILDING MATERIALS FOR LINING TUNNELS CONSTRUCTED UNDERNEATH SALINE WATER

by YOUSEF ABDALLAH YOUSEF

ABSTRACT

The increasing demand for underground constructions, especially tunnels, has led to widen worldwide the areas of research in this field. The main concern of most investigations in this field was to prevent any deterioration could occur to these constructions due to the environment surrounding them, and hence lengthen their life. Therefore studying the behaviour of construction materials which are subjected to aggressive surrounding media, such as saline water or acidic water the prime concern of most research works.

The main body of most various purposes tunnels being made of concrete and reinforced concrete. This main body is almost attacked by the aggressive media which are present in the water saturating the covering soil or rock strata.

The present work high - lights the results of a research programme that has treated this subject.

Usually, the concrete constituents are cement, aggregates and water. The

aggregates themselves are of two kinds, coarse and fines.

Natural sands are usually used as fines. However, coarse aggregates may be crushed stones or natural gravels. Cement, being of various types, as well. Clean fresh water is always recommended to be used in manufacturing and curing the concrete. Hence, the programme of the present research will be systematically directed towards the first two components (i.e., cement and coarse aggregates) which having several types.

In the present work, three types of coarse aggregates varying in their chemical and physical properties were employed. They are natural gravels, crushed dolomite and crushed basalt gravels. The cement was also of three types, ordinary Portland, iron slag and sulphate resisting cement, to make nine different

types of concrete.

Hundreds of concrete cubes (150 x150 x 150 mm) were cast of each type of cements and aggregates. These cubes were subjected to environmental conditions similar to those facing the underground constructions. These cubes were tested for their strength changes due to these various environmental conditions with the progress in time. The results indicated that all parameters which were investigated have great effects on the made up concrete.

CONTENTS

•		-		Page No.
ABSTRACT.	•			i
LIST OF FIGURES.				v
LIST OF TABLES.	·	t. 		vii
LIST OF PLATES.	į		T.	vIII
CHAPTER I	· · · · · · · · · · · · · · · · · · ·			
General Introduction	(1 · · · · · · · · · · · · · · · · · · ·
CHAPTER II	i !	ĺ		
Literature Review	,			3
CHAPTER III Objective of the Present	ed Res	earch V	iork.	12

PageNo. CHAPTER Experimental Work. Introduction 4. 1. 14 Fine Aggregate. 4. 2. 17 Coarse Aggregates. 4.3. 19 Natural Gravels. 4. 3. 1. 21 Dolomite Rock. 4. 3. 2. 23 Basalt Rock. 4.3. 3. 24 Cement 4. 4. 26 **Preparation of Concrete** 4. 5. Specimens (Cubes). 29 Experimental Programme. 4. 6.

CHAPTER V

	Page No.
Presentation and Discussion of the Results.	32
5.1. Presentation of the Results.	32
5. 1. 1. Results of Natural Gravels.	32
5. 1. 2. Results of Crushed Dolomite Aggregate	s. 36
5.1. 3. Results of Crushed Basalt Aggregates.	41
5. 2. Discussion of the Results	45
CHAPTER VI	
Conclusions and Recommendations.	53
References	57
Appendix	60

LIST OF FIGURES

Figure.		PageNo.
5.1.	- Effect of various	33
	exposures on ordinary	
	Portland cement / natural	
	gravel concrete.	•
5. 2.	- Effect of various	34
	exposures on Iron slag	
	cement / natural gravel	
	concrete	
	: : !	
5. 3.	- Effect of various exposures on	35
	sulphate resisting	
	cement / natural gravel concrete.	
		l
5. 4 .	- Effect of various exposures on	37
	ordinary Portland cement /	
	crushed dolomite concrete.	

		Page No
5. 5.	- Effect of various exposures on	38
	iron slag cement/ crushed	1
	dolomite concrete.	
5. 6.	 Effect of various exposures on 	39
	sulphate resisting cement /	
	crushed dolomite concrete.	¦
		42
5. 7.	- Effect of various exposures on	,
	ordinary Portland cement /	
	crushed basalt concrete.	
5. 8.	- Effect of various exposures on	43
	iron slag cement / crushed	
	basalt concrete.	
5. 9.	- Effect of various exposures	44
	on sulphate resisting	
	cement / crushed	
	basalt concrete.	. :

LIST OF TABLES

Table		Page No.
4. 1.	Chemical analysis of fine aggregate (Sand).	16
4. 2.	Size analysis of fine aggregate	16
4. 3.	Chemical analysis of the Suez Gluf Water.	20
4. 4.	Physical and chemical properties of natural gravels.	21
4. 5.	Properties of dolomite rock	22
4. 6.	Properties of basalt rock	23
4.7.	Chemical composition of clinker.	25
6.1.	Summary of all results as guide for design engineer.	56
Append	ix	ļ
5.1.	Summary of gravel results.	60
5.2 .	Summary of dolomite results.	61
5.3.	Summary of basalt results.	62