التطبيقات التخديرية الخاصة بعمليات القلب التداخلية

رســـــالة

توطئة للحصول على درجة الماجستير في التخدير

مقدمة من

الطبيب/ رامي محمد نجيب أحمد

بكالوريوس الطب والجراحة العامة جامعة عين شمس

تحت اشراف

الأستاذ الدكتور/ رؤفت عبد العظيم حماد

أستاذ التخدير والرعاية المركزة

كلية الطب

جامعة عين شمس

الدكتورة/ نهى محمد قمر الشرنوبي

أستاذ مساعد التخدير والرعاية المركزة

كلية الطب

جامعة عين شمس

الدكتور/ محمد محمد عبد الفتاح

مدرس التخدير والرعاية المركزة

كلية الطب

جامعة عين شمس

كلية الطب

جامعة عين شمس

C-1E

Anesthetic Implications for Interventional Cardiological Procedures

Essay

Submitted For Partial Fulfillment of Master Degree in Anesthesia

$\mathcal{B}y$ Ramy Mohamed Nageb Ahmed

 $(\mathcal{M}.\mathcal{B}.\mathcal{B}.\mathcal{CH}.)$

Supervised by

Prof. Dr. Raafat Abdel Azim Hammad

Professor of Anesthesiology and Intensive Care Medicine Faculty of Medicine Ain Shams University

Dr. Noha Mohamed El Sharnoby

Assistant Professor of Anesthesiology and Intensive Care Medicine Faculty of Medicine Ain Shams University

Dr. Mohamed Mohamed Abdel Fattah

Lecturer of Anesthesiology and Intensive Care Medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain shams University 2014

First of all, I thank Allah for blessing this work until it has reached its end, as a part of his generous helping throughout my life.

I would like to express my deep gratitude and appreciation to **Prof. Dr. Raafat Abdel Azim Hammad,** Professor of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Ain Shams University for his continuous support and supervision.

I would also like to express my gratitude to **Dr. Noha**Mohamed El Sharnoby, Assistant Professor of Anesthesiology
and Intensive Care Medicine, Faculty of Medicine, Ain Shams
University for her continuous support and supervision.

I would also like to express my gratitude to **Dr. Mohamed**Mohamed Abdel Fattah, Lecturer of Anesthesiology and

Intensive Care Medicine, Faculty of Medicine, Ain Shams

University, for his continuous support and supervision.

Finally, I dedicate this effort to My Mother, who helped me in every moment of my life. Also I dedicate this work to my life.

Ramy Mohamed Nagieb

List of Contents

	Page	
List of Abbreviations	ı	
List of Tables	Ш	
List of Figures	IV	
Introduction		
Aim of the Study		
Review of literature		
Chapter (1): Anesthesia for electro-physiological procedures	6	
Chapter (2): Anesthesia for intervention for congenital heart diseases	37	
Chapter (3): Anesthesia for trans catheter valve replacement	74	
E Chapter (4): Anesthesia for coronary angiography	104	
Summary		
References		
Arabic Summary		

List of Abbreviations

AF	Atrial fibrillation
AM	Acute marginal artery
ASA	American Society of Anesthesiologists
ASD	Atrial septal defect
Av node	Atrio ventricular node
BiV	Biventricular
CABG	Coronary arteries bypass grafts
CDAD	Clostridium difficile associated diarrhea
CHD	Congenital heart disease
CHF	Congestive heart failure
COA	Co arctation of aorta
CRT	Cardiac resynchronization therapy
EP	Electro-physiological
GCV	Great cardiac vien
HFJV	High frequency jet ventilation
HR	heart rate
ICE	Intra cardiac echo
ICD	Intra cardiac device
IPPV	Itermitend positive pressure ventilation
LA	Left atrium
LAA	Left atrial appendage
LAD	Left anterior descending artery
LCX	Left circumflex artery
LM	Left main artery
LV	Left Ventricle
MAC	minimal alveolar concentration
MCV	Middle cardiac vien
OM	Obtius marginal artery
PDA	Patent ductus arteriosus
PDa	Posterior descending artery
PFO	Patent foramen ovale
PO	Per oral
PS	Pulmonary stenosis
PVI	Pulmonary vien isolation
PVR	Pulmonary vascular resistance

List of Abbreviations

RCA	Right coronary artery
Rf	Radio frequency
RFA	Radio frequency ablation
RSPV	Right superior pulmonary vien
RV	Right ventricle
RVOT	Right ventricular outflow tract
SA	Sinusoidal artery
SA node	Sinus atrial node
SPAF	Stroke prevention atrial fibrillation
SVR	Systemic vascular resistance
TAVI	Transcatheter aortic valve implantation
TIA	Transient ischemic attack
VSD	Ventricular septal defect
VT	Ventricular tachycardia
WPW	Wolff Parkinson white

List of Tables

No.	Table	Page
1-	Midazolam for premedication	66
2-	Ram asy score	68
3-	Risk factors, definitions and weights	77
4-	Application of scoring system	78

List of Figures

No.	Figure	Page
1-	Electrical system of the heart	7
2-	Diagram showing landmarker of cardiac conduction system	8
3-	Photographs showing land mark of cardiac conduction system	9
4-	Blood supply of SA node	10
5-	Chest x-ray in anter posterior and lateral view after pace maker implantation	17
6-	Lead implantation	18
7-	Patient position connected to monitor devices	25
8-	Figures showing different sites of narrowing in co arctation of aorta	38
9-	Angiography of co arctation of aorta	38
10	Aortic isthmus stenosis: angiography prior to stent implantation	39
11-	Aortic isthmus stenosis after stent implantation	39
12-	Types of atrial septal defects	40
13-	Atrial septal defect (ASD)	41
14-	An AmplatzerTM Septal Occluder placed across an atrial septal defect	44
15-	A delivered and released Gore® Helex® device is demonstrated in an atrial septal defect	45
16-	AMPLATZER PFO Occluder	47
17-	Types of ventricular septal defects	48
18-	Ventricular septal defect (VSD)	49
19-	An Amplatzer TM Muscular VSD device	50
20-	Patent ductus arteriosus	52
21-	Coil Closure of PDA	53

List of Figures

No.	Figure	Page
22-	The AMPLATZER Duct Occluder	53
23-	A type II AmplatzerTM Vascular Plug is demonstrated with the triple lobed design	55
24-	The WATCHMAN Left Atrial Appendage Occlusion device	56
25-	Respiratory monitoring via lateral flow CO2 measurement in the oropharyngeal tube	70
26-	Screenshot: spontaneous breathing during deep sedation	72
27 -	Placement of patient connected to monitoring devices	73
28-	Aortic stenosis	74
29-	A properly positioned prosthetic valve	75
30-	(A) The Edwards SAPIEN balloon expandable transcatheter heart valve (Edwards Lifesciences).	75
31-	Placement of patient with arms above the patient's head	82
32-	Implantation of a Melody® valve	84
33-	Pulmonary stenosis	89
34-	Pulmonary artery angiogram demonstrates Melody® valve competence with no regurgitation	90
35-	The Melody® transcatheter pulmonary valve	91
36-	Angiography during the procedure	93
37 -	The Mitraclip edge-to-edge endovascular mitral valve percutaneous clip system	94
38-	The Blood Supply to the Heart	104
39-	Coronary angiography	106
40-	2D map. Left anterior coronary artery and left circumflex coronary artery	106
41-	A coronary angiogram that shows the left coronary circulation	109

Introduction

The demand for anesthetic support for interventional cardiology procedures is increasing as the number and complexity of these procedures rapidly expand. Providing safe anesthesia care to patients undergoing these procedures requires comprehensive preoperative assessment, involvement in the multidisciplinary planning of these cases, and a detailed understanding of the procedures and their potential complications (*Butera et al., 2010*).

The common interventional procedures are covers closure of intracardiac shunts, closure of patent ductus arteriosus (PDA), left atrial appendage (LAA) occlusion devices, transcatheter valves, and the implantation and removal of pacemaker and rhythm management devices. Electro-physiological (EP) procedures and anesthetic management issues in patients with congenital heart disease (CHD) are reviewed as well as the anesthetic implications of ionizing radiation and practice in a remote location (*Hayman et al.*, 2012).

Various methods have evolved over the years to handle the specific problems of anesthesia for infants and children undergoing diagnostic heart catheterization. It is generally agreed that some form of general sedation or anesthesia is necessary. Virtually all forms of anesthesia have been used. General anesthesia is recommended by some whereas other forms of sedation are equally popular (*Drabek and Němec*, 2012).

Introduction

Rapid progress in interventional cardiology has recently resulted in that the rate of percutaneous coronary intervention overtakes that of coronary artery bypass surgery. Now attention is directed towards the treatment of valvular heart diseases, with exciting developments in balloon and stent technology having the potential to transform the management of many common heart conditions, such as aortic stenosis (Coats and Bonhoeffer, 2007). Aortic stenosis is the most common form of valvular heart disease in adults, affecting thousands of patients every year and causing significant morbidity and mortality in case of advanced disease. Surgical aortic valve replacement is the treatment of choice for a vast majority of patients. However, in a subset of patients, mainly elderly patients with declining overall health status or severe comorbidities, aortic valve replacement is considered either too high risk or contraindicated (*Iung et al.*, 2003).

Patients treated in remote locations tended to be older and sicker and more likely in need of emergent care than patients receiving care in operating room settings. Not surprisingly, procedures in remote locations were more likely to involve minimal alveolar concentration (MAC) or no anesthesia than were procedures in operating rooms. The most common remote locations were the cardiology catheterization / electrophysiology suite. The rest of the claims occurred in the emergency room, radiology or lithotripsy suite (*Metzner*, 2010).

More than half of patients receiving care in remote locations died compared to 29 percent of patients receiving care in operating rooms. In contrast, patients treated in operating rooms were more likely to have temporaty non-disabling injuries than patients treated in remote locations (*Metzner*, 2010).

Respiratory events were more likely to occur in remote locations than in operating rooms. Inadequate oxygenation/ventilation was the most common respiratory event. Other types of respiratory events included esophageal intubation, difficult intubation and aspiration of gastric contents (*Metzner et al.*, 2009).

In 30 percent of the remote location, an obsolute or relative overdose of sedative, hypnotic and/ or analgesic durgs led to respiratory depression. Great percent of the patient had no monitoring devices in use during the procedure. Almost all of the cases involving oversedation in remote location resulted in death or severe brain damage (*Metzner et al.*, 2009).

Apnea lasting 20 or more seconds is common in patients receiving MAC sedation. Without the use of capnography or other monitoring equipment, apnea lasting 20 or more seconds is often not detected. According to the ASA stadards for Basic anesthetic monitoring, during MAC the adequacy of ventilation should be determined through continuous

Introduction

observation of qualitative clinical signs of patient respiration and/or monitoring for the presence of exhaled carbon dioxide.

The patient lies flat and his arms on his head to be away from the imagining field and this carries risk of brachial plexues nerve injury (*Nordmeyer et al.*, 2009).

Aim of the Study

The study aims to present new methods & advances for anesthesia of interventional cardiological procedures instead of open heart surgery.