Study of Relationship between Endotoxemia and Cardiovascular Disease in Hemodialysis Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By

UmniahAbou El-ElaAbdo

M.B.B.ch

Faculty of Medicine-Ain Shams University

Under supervision of

Prof. Dr. Mohamed Ali Ibrahim

Professor of Internal Medicine and Nephrology Faculty of Medicine-Ain Shams University

Dr. MahaAbd El MoneimBehairy

Lecturer of Internal Medicine & Nephrology Faculty of Medicine-Ain Shams University

Dr. Ahmad ElsayedYousef

Lecturer of Cardiology
Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain shams University 2015

در اسة العلاقة بينا لاندو تكسيمياو أمراض القلب والشرايينفي مرضيالغسيل الكلوي

رسالة

توطئة للحصول على درجة الماجستير في أمراض الباطنة العامة

مقدم من

أمنية أبو العلا عبده

بكالوريوس الطب والجراحة

كلية الطب - جامعة عين شمس

تحتاشراف

الأستاذالدكتور/محمدعلى إبراهيم

أستاذا لأمراض الباطنة والكلى

كلية الطب - جامعة عين شمس

الدكتورة / مها عبد المنعم بحيرى

مدرس امراض الباطنة والكلي

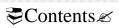
كلية الطب - جامعة عين شمس

الدكتور/أحمد السيد يوسف

مدرس أمراض القلب

كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2015



- All praise are to **Allah** and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.
- I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Mohamed Ali Ibrahim**, Professor of Internal Medicine and Nephrology, Faculty of medicine, Ain Shams University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.
- Behairy, Lecturer of Internal Medicine & Nephrology, Ain Shams University, who freely gave her time, effort and experience along with continuous guidance throughout this work.
- A lot of thanks are extended to **Dr. Ahmad Elsayed Yousef**, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University for his effort, constant encouragement and advice whenever needed.

> Umniah Abou El-Ela Abdo

سورة البقرة الآية: ٣٢

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	V
List of Figures	IX
• Introduction	1
Aim of the Work	3
Review of literature	
- Chapter (I): Cardiovascular disease	es in hemodialysis
patients	4
- Chapter(II):Endotoxemia in hemodi	alysis patients27
- Chapter (III): Management of	endotoxemia in
hemodialysis patients	48
Patients and Methods	67
• Results	73
• Discussion	114
Summary& Conclusion	125
Recommendations	130
• References	131
Arabic summary	

List of Abbreviations

Abb. Meaning

ACS.....: Acute coronary syndrome

ADMA Asymmetric dimethyl arginine

ADP.....Adenosine diphosphate

AGEs.....: Advanced glycation end-products

ALP Alkaline phosphatase

AMI.....: Acute myocardial infarction

ANSI American National Standards Institute

BMI: Body mass index

BP.....: Blood pressure

BUN: Blood urea nitrogen

Ca..... Calcium

CACS Coronary artery calcium score

CAPD...... Continuous ambulatory peritoneal dialysis

CaSR Calcium sensing receptors

CCA Common carotid artery

CHD Coronary heart disease

CHF.....: Congestive heart failure

cIMT: Carotid artery intima _media thickness

CKD Chronic kidney disease

CMRI Cardiac magnetic resonance imaging

COP.....: Cardiac output

CPFA.....: Coupled plasma filtration adsorption

CRP.....: C-reactive protein

CRRT: Continuous renal replacement therapy

cTnI: Cardiac troponin I

cTnT.....: Cardiac troponin T

CV: Cardiovascular

CVA: Cerebrovascular accident

List of Abbreviations (Cont..)

Abb.	Meaning
CVDs:	Cardiovascular diseases
DIC:	Disseminated intravascular coagulation
E:	Early trans-mitral diastolic velocity
e':	Early diastolic velocity of the mitral annulus
EAA:	Endotoxin activity assay
EBPG:	European Best Practice guidelines
EF:	Ejection fraction
EPO:	Erythropoietin
ESA:	Erythropoiesis-stimulating agents
ESP:	Endotoxin scattering photometry
ESRD:	End stage renal disease
FAO:	The Food and Agriculture Organization
FGF23:	Fibroblast growth factor 23
GDF-15:	Growth differentiation factor-15
GFR:	Glomerular filtration rate
GIT:	Gastrointestinal tract
GLP-2:	Glucagon-like peptide 2
HCO:	High cut-off
HD:	Hemodialysis
HDF:	Hemodiafiltration
HF:	Heart failure
HGB:	Hemoglobin
HsCRP:	High sensitivity CRP
HsTnI:	High-sensitivity troponin I
IDWG:	Inter-dialytic weight gain
IVSd:	Inter ventricular septum diameter in diastole
LA:	Left atrium
LAD:	Left atrial dimension

List of Abbreviations (cont..)

Meaning Abb. LAL.....Limulus amebocyte lysate LAVi: Left atrial volume index LBP Lipopolysaccharide binding protein LPS.....Lipopolysaccharide LV Left ventricle LVEDD: Left ventricle end-diastolic diameter LVESD.....: Left ventricle end-systolic diameter LVH Left ventricular hypertrophy LVM.....: Left ventricular mass LVMI: Left ventricular mass index LVMI Left ventricular mass index LVPW Left ventricular posterior wall diameter in diastole MAMPs...... Microbe-associated molecular patterns MAP...... Mean arterial blood pressure MAPK: Mitogen activated protein kinase MCP-1..... Monocyte chemoattractant protein-1 MD2 Myeloid differentiation factor 2 MI...... Myocardial infarction Na....: Sodium NAFLD Non-alcoholic fatty liver disease NFAT Nuclear factor of activated T cells NO.....: Nitric oxide NOS...... Nitric oxide synthase NT-pro-BNP N-terminal prohormone brain natriuretic peptide P Phosphate PD Peritoneal dialysis

PE.....: Pulmonary embolism

List of Abbreviations (cont..)

Abb.	Meaning
•	Peroxisomal proliferator activated receptor gamma
PRRs	Pattern-recognition receptors
PTH	Parathyroid hormone
PTX3	Pentraxin 3
RAGE	Receptors for advanced glycation end products
RO	Reverse osmosis
RWT	Relative wall thickness
SCD	Sudden cardiac death
TER	Trans-epithelial electrical resistance
TG	Triglycerides
TIA	Transient ischemic attacks
TLR4	Toll-like receptor 4
TSAT	Transferrin saturation
UF	Ultrafiltration
UFR	Ultrafiltration rate
URR	Urea reduction ratio
VSMC	Vascular smooth muscle cell
WHO	The World Health Organization
ZO-1	Zonula occludens 1
2D	Two dimensional
3D	Three dimensional

List of Tables

Table No	Title	Page
Table (1a)	Characteristics of the studied patients.	75
Table (1b)	Characteristics of the studied patients.	76
Table (2a)	Comparison between studied groups	77
	regarding echocardiographic parameters.	
Table (2b)	Comparison between studied groups	78
	regarding echocardiographic parameters.	
Table (3)	Comparison between studied groups	79
	regarding laboratory results.	
Table (4a)	Comparison between studied groups	80
	regarding characteristics of the patients.	
Table (4b)	Comparison between studied groups	81
	regarding characteristics of the patients.	
Table (5a)	Correlation between pre-dialysis	82
	endotoxin level and echocardiographic	
	parameters.	
Table (5b)	Correlation between pre-dialysis	83
	endotoxin level and echocardiographic	
	parameters.	
Table (6)	Correlation between pre-dialysis	84
	endotoxin level and laboratory results.	
Table (7a)	Correlation between pre-dialysis	85
	endotoxin level and characteristics of the	
	patients.	
Table (7b)	Correlation between pre-dialysis	86
	endotoxin level and characteristics of the	
	patients.	

List of Tables(Cont..)

Table No	Title	Page
Table (8a)	Correlation between post-dialysis	87
	endotoxin level and echocardiographic	
	parameters.	
Table (8b)	Correlation between post-dialysis	89
	endotoxin level and echocardiographic	
	parameters.	
Table (9)	Correlation between post-dialysis	90
	endotoxin level and laboratory results.	
Table (10a)	Correlation between post-dialysis	91
	endotoxin level and characteristics of the	
	patients.	
Table (10b)	Correlation between post-dialysis	92
	endotoxin level and characteristics of the	
	patients.	
Table (11a)	Correlation between endotoxin delta	93
	change and echocardiographic parameters.	
Table (11b)	Correlation between endotoxin delta	95
	change and echocardiographic parameters.	
Table (12)	Correlation between endotoxin delta	96
	change and laboratory results.	
Table (13a)	Correlation between endotoxin delta	97
	change and characteristics of the patients.	
Table (13b)	Correlation between endotoxin delta	98
	change and characteristics of the patients	
Table (14)	Correlation between LV mass index and	99
	laboratory results.	

List of Tables(Cont..)

Table No	Title	Page
Table (15)	Correlation between LV hypertrophy and laboratory results.	100
Table (16)	Correlation between LV mass index and patients' characteristics	101
Table (17)	Relation between LVH and patients' characteristics.	102
Table (18)	Description of the carotid duplex parameters.	103
Table (19)	Comparison between the studied groups regarding the carotid duplex parameters.	104
Table (20)	Relation between CCA atherosclerosis and laboratory results.	105
Table (21a)	Relation between CCA atherosclerotic changes and characteristics of the patients.	106
Table (21b)	Relation between CCA atherosclerotic changes and patient's characteristics.	107
Table (22)	Correlation between CCA intimal thickness and laboratory results.	108
Table (23a)	Correlation between CCA intimal thickness and patients' characteristics.	109
Table (23b)	Correlation between CCA intimal thickness and patients' characteristics.	110
Table (24)	Multivariate analysis for factors affecting endotoxin delta change (linear regression for determinants of endotoxin delta change).	111

List of Tables(Cont..)

Table No	Title	Page
Table (25)	Multivariate analysis for factors affecting	112
	MVE/A ratio (linear regression for	
	determinants of mv e/a ratio).	
Table (26)	Univariate analysis for factors affecting	113
	MVE/A ratio (linear regression for	
	determinants of MV E/A).	

List of Figures

Figure No	Title	Page
Figure (1)	Causes of death in prevalent HD patients.	5
Figure (2)	Dose-effect relation between HsCRP level	7
	and IL-6:IL-10 ratio and the number of	
	LV segments that subsequently developed	
	wall motion abnormalities during or after	
	HD.	
Figure (3)	Comparison of the distribution of values	7
	of left atrial dimension (A - LAD) and	
	left atrial volume index (B - LAVi) in	
	subjects from Group I (control) and Group	
	II (upper quartile of CRP) of the study	
	population.	
Figure (4)	Changes in blood volume, E and mean e'	17
	in comparison to predialysis values.	
Figure (5)	Kaplan-Meier survival curves for CV	20
	mortality in patients with CACS above	
	800 Agatston units versus patients with	
	lower CACS values.	
Figure (6)	Frequent HD is associated with favorable	26
	changes in LV mass.	
Figure (7)	Schematic diagram of endotoxin molecule	28
	structure.	
Figure (8)	Bar graphs depicting the TER in intestinal	31
	epithelial cell monolayers incubated for	
	24h in regular media and those incubated	
	in media containing 42 or 72 mg/dl urea.	

List of Figures (Cont..)

Figure No	Title	Page
Figure (9)	Representative Western blots and group	31
	data depicting protein abundance of	
	occludin, claudin-1 and ZO-1 in intestinal	
	epithelial cell monolayers incubated for	
	24h in media containing 42 mg/dl urea	
	alone and those incubated in media	
	containing 42 mg/dl urea plus urease.	
Figure (10)	Risk factors aggravating GI translocation	35
	of endotoxin in HD patients.	
Figure (11)	Distribution of circulating endotoxin	36
	levels across the spectrum of CKD	
	patients.	
Figure (12)	The inflammatory pathway induced by	38
	endotoxin.	
Figure (13)	Predialysis endotoxin levels were	42
	significantly correlated with a) the number	
	of myocardial stunned segments and b)	
	cTnT, a marker of myocardial damage.	
Figure (14)	Effect of intraperitonealLPS injection on	43
	the cardiac muscle of the mice.	
Figure (15)	Effect of intraperitonealLPS injection on	44
	IL-6 expression and collagen fraction area	
	of the LV.	
Figure (16)	Probiotics benefit the host by	54
	communicating with a variety of cell	
	types.	