

RECENT METHODS FOR STUDYING THE EFFECT OF SUBLETHAL DOSE OF IONIZING RADIATION ON SOME VIRULENT DETERMINANT PRODUCED BY PATHOGENIC MICROORGANISMS ISOLATED FROM PATIENTS OF URINARY TRACT INFECTION

A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science

In Microbiology

By

Reham Rashad El-Behery B.Sc. (1995)

2005

APPROVAL SHEET

Name: Reham Rashad Mahmoud El-Behery

Title: Recent Methods for Studying the Effect of Sublethal Dose of Ionizing Radiation on Some Virulent Determinant Produced by Pathogenic Microorganisms Isolated from Patients of Urinary Tract Infection.

Supervisors:	Approved
1-Prof. Dr. Azhar Abd-El Karim Hussien	•••••
2-Prof. Dr. Hala Abdallah Farrag Massoud	•••••
3-Prof. Dr. Mohamed Saved Salama	•••••

ACKNOWLEDGMENT

I wish to express my deepest gratitude to god for supporting me to accomplish this work.

I would like to express my great thanks and my gratefulness to Dr. Azhar Abd-El Karim, Professor of Microbiology, Botany Department, College for women, Ain Shams University, for her keen supervision, and continuous encouragement throughout this work.

I deeply appreciate the effort of Dr. Hala Abdallha Farrag Massoud, Professor of Microbiology, National Center for Radiation Research and Technology (NCRRT). Atomic Energy Authority, for devoting much of her valuable time in the supervision of this work, suggestions, valuable remarks, comments, continuous encouragement and unlimited help.

My sincere thanks and gratitude to Dr. Mohamed Salama, Professor of Genetics, Entomology Department, Faculty of Science, Ain Shams University for his kind supervision and valuable remarks.

I am very thankful to Dr. Mohamed Abou-Zeid, Professor of Zoology, El-Azhar University for his cooperation and valuable help concerning the section of the protein analysis.

A special gratitude is due to Dr. Soheir Abdel-Latif Issa, Professor of Clinical Pathology, Clinical Pathology Department, National Cancer Institute, Cairo University for her encouragment and facilities offered to accomplish this work.

I am also seizing this opportunity to thank all staff members of the Drug Microbiology Laboratory, Drug Radiation Research Department at (NCRRT), all staff members of Radiation Department at (NCRRT) for their sincere cooperation.

DEDICATION

I would like to dedicate this work to my husband for putting up with me and supporting me all through this work, to my parents for their encouragement and support and to my children wishing them a life overwhelmed with success

Many thanks to all of them

Reham

This thesis has not been submitted for a degree at this or any other University. Reham El-behery

CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	3
REVIEW OF LITERATURE	6
1-Cancer Infection.	
2-Bacterial Metabolites as tumor promoters.	
3-Antimicrobial chemotherapy for urinary tract infection.	
4-Production of extracellular polysaccharide slime as a	
virulence factor by pathogenic microorganisms.	
5-Extrachromosomal DNA of some pathogenic microorgan-	
isms	
6-Enzymatic activity of yeast isolates as a virulence factor.	
7-Ionizing Radiation.	
MATERIALS AND METHODS	50
1-Collection of samples.	
2-Media used for isolation and cultivation of pathogenic	
bacteria and yeast.	
3-Microbial Count.	
4-Identification of isolated pathogenic bacteria and yeast.	
5- Irradiation sensitivity of the isolated bacteria and fungi.	
6- Antimicrobial susceptibility patterns of isolates before	
and after in-vitro gamma irradiation.	
7- Effect of gamma irradiation on slime production from	
bacterial and yeast isolates.	
8- Plasmid analysis of some multi-resistant bacterial isolates	
before and after <i>in-vitro</i> gamma irradiation.	
9- Total protein profile of yeast isolates before and after	
gamma irradiation.	

	Page
RESULTS	68
Section A: Isolation and Identification.	
Section B: Antimicrobial susceptibility test for all pathogenic	
bacteria and yeast isolates to different antimicrobial	
agents.	
Section C: Production of extracellular slime by pathogenic	
bacteria and yeast isolates before and after exposure	
to 20Gy gamma irradiation.	
Section D: Plasmid profiles of some bacterial isolates before	
and after irradiation.	
Section E: SDS-PAGE of yeast isolates before and after in-	
vitro gamma irradiation.	
DISCUSSION	132
CONCLUSION	150
SUMMARY	152
REERENCES	157
ARABIC SUMMARY	

LIST OF TABLES

	Page
Table (A): Major classes of antibiotics in current medical use	23
with mechanisms of action and resistance.	
Table (B): Types of antimicrobial agents used and the	56
susceptibility break point.	
Table (1): Number and frequency of pathogenic bacteria and	71
yeasts isolated according to sex.	
Table (2): Genera and species of bacteria and yeasts isolated	71
from urine samples.	
Table (3): Prevalence of pathogenic bacteria and yeasts.	72
Table (4): Sensitivity test of isolated pathogenic bacteria and	74
yeasts against different antibiotics before and after 20	
Gy <i>in-vitro</i> gamma irradiation.	
Table (5): Number and frequency of resistant bacterial	82
isolates against different antibiotics before and after	
in-vitro gamma irradiation.	
Table (6): Changes in antimicrobial susceptibility of all	85
bacterial isolates before and after In-vitro gamma	
irradiation	
Table (7): Number and frequency of all resistant bacterial	89
isolates against different antibiotics before and after	
gamma irradiation according to mode of action	
Table (8): Change in antimicrobial susceptibility against	102
different antibiotic after gamma irradiation according	
to mode of action.	
Table (9): Extracellular slime production before and after	107
in-vitro 20Gy gamma irradiation.	
Table (10): Antimicrobial susceptibility pattern of slime	113
producer bacterial isolates against different antibiotics	
before and after irradiation.	
Table (11): Area percentage of different protein fraction of	121
Candida tropicalis before and after in-vitro gamma	
irradiation	

	Page
Table (12): Area percentage of different protein fraction of	123
Candida albicans (1) before and after in-vitro gamma	
irradiation.	
Table (13): Area percentage of different protein fraction of	126
Candida albicans (2) before and after in-vitro gamma	
irradiation	
Table (14): Area percentage of different protein fraction of	130
Candida albicans (3) before and after in-vitro gamma	
irradiation	

LIST OF FIGURES

	Page
Figure (1): Number of positive cases of pathogenic bacteria	69
and yeasts out of 100 cases of bladder cancer.	
Figure (2): Number of bacteria and yeast isolates out of 73	69
positive cases suffering from urinary tract infection	
Figure (3): Prevalence of pathogenic bacteria and yeasts.	73
Figure (4): Number and frequency of resistant bacterial	83
isolates against different antibiotics before and after in	
vitro gamma irradiation	
Figure (5): Changes in antimicrobial susceptibility of all	86
bacterial isolates before and after gamma-radiation	
Figure (6): Number of resistant E. coli against tested	91
antibiotics before and after gamma-irradiation	
Figure (7): Number of resistant Pseudomonas aeruginosa	92
against tested antibiotics before and after gamma-	
radiation	
Figure (8): Number of resistant Klebsiella species against	93
tested antibiotics before and after gamma-radiation	
Figure (9): Number of resistant <i>Proteus</i> species against tested	94
antibiotics before and after gamma-radiation	
Figure (10): Number of resistant <i>Providencia</i> species against	95
tested antibiotics before and after gamma-radiation	
Figure (11): Number of resistant Enterobacter coloacae	96
against tested antibiotics before and after gamma-	
radiation	
Figure (12): Number of resistant Acinetobacter.	97
calco.var.lwoffi against tested antibiotics before and	
after gamma-radiation	
Figure (13): Number of resistant Serratia marcescens against	98
tested antibiotics before and after gamma-radiation	
Figure (14): Number of resistant Staphylococcus species	99
against tested antibiotics before and after gamma-	
radiation	

	Page
Figure (15): Number of positive isolates to extracellular	109
slime production before and after gamma radiation	
Figure (16): The number of resistant slime producer bacterial	115
isolates against different antibiotics before and after	
irradiation	
Figure (17): The Electropheorogram corresponding to the	120
scanned gel of malt extract broth	
Figure (18): The Electropheorogram corresponding to the	122
scanned gel of Candida tropicalis before and after	
irradiation.	
Figure (19): The Electropheorogram corresponding to the	124
scanned gel of Candida albicans (1) before and after	
irradiation.	
Figure (20): The Electropheorogram corresponding to the	127
scanned gel of Candida albicans (2) before and after	
irradiation.	
Figure (21): The Electropheorogram corresponding to the	131
scanned gel of Candida albicans (3) before and after	
irradiation.	

LIST OF PLATES

	Page
Plat (1): Agarose gel electrophoresis of plasmid DNA from	117
clinical isolates.	
Plate (2): The SDS-PAGE gel of the different protein	118
fractions of the four studied yeast isolates.	

ABSTRACT

Plasmid profiles and total protein analysis obtained by gel electrophoresis in conjunction with antibiogram and extracellular slime production as a virulent determinant were used, in studying the role of radiotherapy at dose level 20 Gy gamma irradiation on microorganisms associated with urinary tract infection (UTI). Slime formation is considered a simple, rapid and most effective method of distinguishing true pathogens from simple contaminants. Seventy three out of one hundred cancer bladder patients who fulfilled clinical diagnostic criteria for UTI were retrospectively enrolled into this study. Sixty nine isolates were positive for bacterial infection (34.25% males, 65.75% females) and 4 isolates of yeast infections all of them were isolated from females.

Identification of the isolated organisms to the species level, revealed the isolation of 15 species of pathogenic bacteria and yeasts belonging to 10 genera. All isolated species of pathogenic bacteria were subjected to sensitivity tests before and after *in-vitro* gamma irradiation using 19 different antibiotics with different mode of actions. The changes in antimicrobial susceptibility pattern of all bacterial isolates showed that, the difference in the mean inhibition zones before and after irradiation were of highly statistical significance except in case of cefotriaxone, penicillin G and sulphametho-xazole trimethoprim. P. values were 0.0573, 0.574 and 0.33 respectively. After irradiation the number of resistant isolates increased in case of cefuroxime cefotaxime, imipenem,

amikacin, gentamicin, kanamycin, tobramycin, nalidixic acid, rifampicin, colistin sulphate and ofloxacin. The change in antimicrobial sensitivity to different antibiotics after irradiation leads to emergence of resistant strains. Thirty two out of 73 isolates (43.83%) had the ability to produce extracellular slime material before irradiation whereas 26.03% only were positive after irradiation. Slime production was accompanied by higher incidence of antibiotic resistance.

Although the percentage of slime production was reduced in some isolates after irradiation the antibiotic resistance was higher after irradiation than before. These results indicated the presence of another factor responsible for antibiotic resistance with slime formation.

There are quite clear differences in the number of bands and molecular weight in plasmid profile and total protein analysis after irradiation. All investigated strains had one plasmid band with molecular weight more than 10 Kb after irradiation. Whereas, one extra-band was observed with *Pseudomonas aeruginosa* with M.wt. > 10kb after irradiation. In case of protein analysis for all of the yeast isolates, there was a clear difference in the number of bands (both major and minor bands) before and after irradiation with some bands disappearing and other new bands appearing in the pattern after irradiation. These techniques were valuable in detecting distinct difference before and after irradiation and its use could be helpful in future investigation of infections and multiple drug resistance by other organsims.

INTRODUCTION

In immuno-compromised cancer patients, infection remains the leading cause of morbidity and mortality due to the disease itself and the proposed cancer treatment in the form of chemotherapy and radiotherapy. The treatment leads to more weakening of the body defence mechanisms (**Dionigi** *et al.*, 1980).

It was reported that, cancer patients are particularly susceptible to certain less common types of infections. There has been an increasing incidence of Gram-negative infections (Altemeier and Wulsin, 1974).

Antibiotics have served as the main weapon in the medical world's arsenal aganist disease. The ability of bacteria to resist the inhibitory and lethal actions of antibiotics is a major clinical problem and has been observed with every antimicrobial agent (Shafran, 1990). The main factor responsible for development and spread of bacterial resistance is the injudicious use of antimicrobial agents which has resulted in most Gram-positive and Gram-negative bacteria continuously developing resistance to the antimicrobials in regular use at different time. Available methods for controling spread of bacterial resistance include rational use of antimicrobial agents, change to newer antimicrobials, and constant surveillance for emerging bacterial resistance (Urassa et al., 1997).

Bacterial virulence had in many studies been related to the ability to form extracellular polysaccharide slime and extracellular proteolytic activity of proteinase enzyme by pathogenic microorganisms (Farrag et al., 2001 b).

The ability of bacterial organisms to produce an extracellular polysaccharide matrix known as slime has been

associated with increased virulence and delayed infections in various prosthetic implants. Within a biofilm, this slime may protect the embedded bacteria from host defense mechanisms (Peters and Schumacher-Pedreau 1994, Heinzelmann *et al.*, 1997 & Farrag, 2001 b).

Plasmids have been described in almost all analysed bacterial species and proven to be essential genetic tool.

The methods of plasmid profile analysis is a reliable method in the investigation of outbreaks of urinary tract infection (Suljagic and Cobeljic 2001). Plasmids can carry genes that code for functions other than transfer or replication. These genes coding for enzymes that, under certain circumstances are advantageous to the bacterial host. Among the phenotypes conferred by different plasmids are antibiotics resistance, antibiotics production, degradation of complex organic compounds, production of colicins, production of enterotoxins and production of restriction and modification enzymes (Manniatis et al., 1982).

An antibiotic resistance gene may transpose from one plasmid to another, may transfer on a plasmid from one bacterial cell to another, or may remain in a bacterial cell which leaves one person and colonizes another(O'Brien et al., 1980).

Candida is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogencity (Farrag et al., 2002)...

The integrity of DNA is essential for the well-being of a cell. Exposure of DNA to high energy radiation such as