MULTI-DRUG RESISTANT PROTEIN EXPRESSION IN RETINOBLASTOMA

IN

PRIMARY ENUCLEATED EYES

VERSUS

EYES ENUCLEATED AFTER FAILURE OF CONSERVATIVE TREATMENT

THESIS

Submitted for Partial Fulfillment of the M.D. Degree in Ophthalmology

By

Mohammed Mahmoud Abdel-Salam

M.B., B.Ch., M.S. "Ophthalmology" Ain Shams University
SUPERVISED BY

PROF. DR. ZAFER F. ISMAIL

Professor of Ophthalmology Faculty of Medicine Ain Shams University

PROF. DR. OTHMAN A. ZIKO

Professor of Ophthalmology Faculty of Medicine Ain Shams University

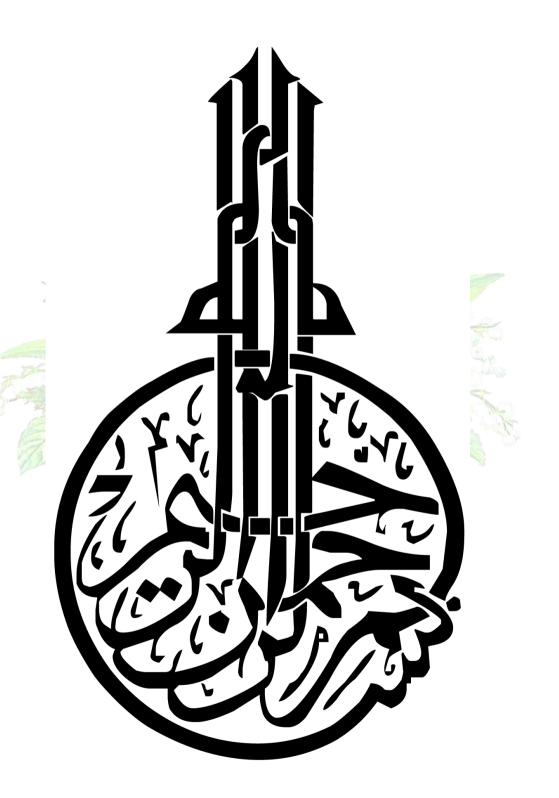
DR. HISHAM KHAIRY ABDEL DAYEM

Assistant Professor of Ophthalmology Faculty of Medicine Ain Shams University

DR. WESAM MOHAMMED OSMAN

Assistant Professor of Pathology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University Cairo - Egypt 2014


Acknowledgement

I always feel the gratitude to Professor Doctor Zafer Fahim for his generous support, not only during this research work, but essentially during my ophthalmic career. His care was really beyond imagination.

I would like also to thank Professor Doctor Othman Zico. His extensive experience in the field of retinoblastoma was pivotal in this work and enriched our study with invaluable ideas.

Special thanks to **Assistant Professor Doctor Hisham Khairy** for his meticulous revision, detailed instructions, keen advice and precious time.

I can't but express my deepest thanks to **Assistant Professor Doctor Wesam Osman**. This work was impossible to see light without her work. She has, willingly, taken the burden of pathological examination. Her marvelous personality has turned our work from being hard and tough to be soft and swift.

CONTENTS

List of figures	Ш
List of charts	٧
List of tables	VII
List of Abbreviations	IX
Introduction	1
Aim of the work	3
Review of literature	4
Pathology of retinoblastoma	4
Diagnosis and treatment of retinoblastoma	21
Chemotherapy of retinoblastoma	37
Multi-drug resistant proteins and Resistance of retinoblastoma	49

Patients and methods	61
Results	69
Discussion	105
Conclusion	115
Summary	117
References	119
Arabic summary	133

LIST OF FIGURES

Figure No.	Title	Page
1	Endophytic retinoblastoma	6
2	Exophytic retinoblastoma	7
3	Diffuse infiltration pattern of retinoblastoma	8
4	Necrotic retinoblastoma	9
5	Pseudorosettes, Haematoxylin and Eosin	10
6	Diagram showing Flexner-Wintersteiner rosettes	12
7	Flexner-Wintersteiner rosettes, Haematoxylin and Eosin	12
8	Diagram showing Homer-Wright rosettes	13
9	Homer-Wright rosettes, Haematoxylin and Eosin	13
10	Diagram showing fleurettes	14
11	Fleurettes, Haematoxylin and Eosin	14
12	Retinoblastoma showing calcification	23
13	CT and MRI scans for retinoblastoma	25
14	Laser treatment for retinoblastoma	26
15	Immobilization of the globe for retinoblastoma	32
16	Three-dimensional EBR targeting of the orbit	32

17	An I-125 radioactive plaque is secured to the sclera overlying the retinoblastoma	34
18	Enucleation for retinoblastoma	36
19	Chemical structure of vincristine	42
20	Chemical structure of carboplatin	43
21	Chemical structure of etoposide	44
22	Structure and three main functions of ABC proteins	51
23	A case of well differentiated retinoblastoma	79
24	A case of well differentiated retinoblastoma	80
25	A case of moderately differentiated retinoblastoma	81
26	A case of poorly differentiated retinoblastoma	82
27	A case of retinoblastoma with esxtensive necrosis	83
28	A case of well-differentiated retinoblastoma showed highly positive immunoexpression	89
29	A case of well-differentiated retinoblastoma showed low positive immunoexpression	90
30	A case of well-differentiated retinoblastoma showed negative immunoexpression	91

LIST OF CHARTS

Chart	Title	
No.		
1	Age at presentation between patients with primary and	72
	secondary enucleation	
2	Age at enucleation in patients with primary and secondary	73
	enucleation	
3	Presentation-Enucleation interval in patients with primary	75
	and secondary enucleation	
4	Gender in patients with primary and secondary enucleation	76
	deficient in patients with primary and secondary endereation	
5	Laterality of the tumor in patients with primary and	77
C	secondary enucleation	
6	Tumor differentiation in patients with primary and	84
O	secondary enucleation	04
7	Optic nerve invasion in patients with primary and secondary	86
1	enucleation	00
0	Choroidal infiltration in patients with primary and	07
8	secondary enucleation	87
	Mutidrug Resistant Protein 1 (MDR1) between patients with	
9	primary and secondary enucleation	92
1.0		0.4
10	Age at presentation in IHC positive and IHC negative patient	94
11	Asset annualisation in HIC monitive and HIC monetive metionts	96
11	Age at enucleation in IHC positive and IHC negative patients	50
12	Presentation-Enucleation interval in IHC positive and IHC	97
14	negative patients	31

13	Gender in IHC positive and IHC negative patients.	98
14	Laterality of the tumor in IHC positive and IHC negative patients.	99
15	Tumor differentiation in IHC positive and IHC negative patients.	101
16	Optic nerve invasion in IHC positive and IHC negative patients.	103
17	Choroidal infiltration in IHC positive and IHC negative patients.	104

LIST OF TABLES

Table No.	Comment	Page
1	History of recognition of the pathology of retinoblastoma	5
2	Different classification systems for choroidal invasion.	17
3	Reese Ellsworth classification system of retinoblastoma	19
4	International classification system of retinoblastoma	20
5	Human ABC proteins and diseases	50
6	Characteristics and findings in different cases of retinoblastoma	70
7	Comparison between age at presentation in patients with primary and secondary enucleation	71
8	Comparison between age at enucleation in patients with primary and secondary enucleation	73
9	Comparison between presentation-enucleation interval in patients with primary and secondary enucleation	74
10	Comparison between gender of patients with primary and secondary enucleation	76
11	Comparison between laterality of the tumor in patients with primary and secondary enucleation	77
12	Comparison between tumor differentiation in patients with primary and secondary enucleation	84
13	Comparison between optic nerve invasion in patients with primary and secondary enucleatio	85

	14	Comparison between choroidal infiltration in patients	87	
		with primary and secondary enucleation	07	
	15	Comparison between Mutidrug Resistant Protein 1		
		(MDR1) in patients with primary and secondary	92	
		enucleatio		
	16	Comparison between age at presentation in IHC positive	94	
	10	and IHC negative patients	94	
	17	Comparison between age at enucleation in IHC positive	95	
	1 /	and IHC negative patients.		
	18	Comparison between presentation-enucleation interval	96	
	10	in IHC positive and IHC negative patients.	90	
	19	Comparison between gender of IHC positive and IHC	98	
	17	negative patients.	90	
	20	Comparison between laterality of the tumor in IHC	99	
	20	positive and IHC negative patients.	99	
	21	Comparison between tumor differentiation in IHC	101	
	21	positive and IHC negative patients	101	
	22	Comparison between optic nerve invasion in IHC	102	
		positive and IHC negative patients	102	
	23	Comparison between choroidal infiltration in IHC	104	
	23	positive and IHC negative patients.		

LIST OF ABBREVIATIONS

ABC	ATP-binding cassette
ATP	Adenosine Triphosphate
CEV	Carpoblatin, Etoposide, Vincristine regimen
CFTR	Cystic fibrosis transmembrane conductance regulator
сGy	CentiGray
CNS	Central nervous system
CsA	Cyclosporin A
CT	Computed Tomography
DD	Disc Diameter
DNA	deoxyribonucleic acid
EBR	External Beam Radiation
EUA	Examination under anaesthesia
Gy	Gray
H_2O_2	Hydrogen peroxide
HDL	High density lipoprotein
IHC	Immunohistochemistry
K	Potassium
KDa	KiloDalton

MDR1	Multidrug resistant protein 1
MRI	Magnetic resonance imaging
MSD	Membrane spanning domain
NaCl	Sodium Chloride
NBD	Nucleotide binding domain
PBS	Phosphate buffer saline
P-gp	P-glycoprotein
RNA	Ribonucleic acid
SUR	Sulphonylurea receptor
TCT	Thermochemotherapy

INTRODUCTION

Retinoblastoma is the most common primary intra-ocular malignancy of childhood and accounts for about 3% of all childhood cancers. It occurs in about 1:17000 live births (Kanski and Bowling, 2011). When it presents at an advanced stage, the mortality is very high up to 100% (Shelil et al., 2003). It is considered one of the important conditions in pediatric ophthalmology in Egypt (Ziko et al., 1989).

Histologically, retinoblastoma may be differentiated showing numerous typical rosettes, more differentiated tumor cells and very well developed inter-cellular junctions. Undifferentiated tumors show the opposite characters. Advanced retinoblastoma tumors requiring enucleation are usually of the undifferentiated type (Ziko et al., 1989).

Treatment options are wide and should be tailored according to the patient condition. They include enucleation, chemotherapy, photocoagulation, thermotherapy and radiotherapy (Shetlar et al., 2008).

There is an increasing trend towards conservative treatment. While chemotherapy is considered a huge leap towards such treatment, there are tumors that prove resistant to chemotherapeutic agents (Di Nicolantonio et al., 2003). Enucleation is still the most commonly used treatment modality in advanced retinoblastoma (Shelil et al., 2003).

The ATP-binding cassette (ABC) transporters are membranebound proteins that efflux xenobiotics from the liver, kidney and

Introduction

gastrointestinal tract. They are thought to cause resistance to chemotherapeutic agents by their efflux from cells and are alleged to act against chemotherapy used for treatment of retinoblastoma. ABC transporters include breast cancer resistance protein (BCRP; ABCG2), multidrug-resistant protein1/P-glycoprotein (MDR1/Pgp; ABCB1), multidrug resistance-associated protein 1 (MRP1; ABCC1), MRP2 (ABCC2) and MRP4 (ABCC4) (Wilson et al., 2006).

Chan et al., 1989, showed increased expression of MDR1/Pgp in retinoblastoma. Later, Chan et al., 1996, documented improved clinical outcomes in patients with retinoblastoma in whom chemotherapy was supplemented with cyclosporine as an inhibitor of MDR1/Pgp. In a later study, Chan et al., 1997, suggested that multidrug resistance-associated protein 1 (MRP1) conveys an alternative means of drug resistance in the presence of MDR1/Pgp inhibitors.