

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

2077

PREDICTION OF HEAT AND POLLUTED MASS TRANSFER AFFECTING OPEN CHANNELS ENVIRONMENT

$\mathbf{B}\mathbf{y}$

Eng. Entesar Abdallh Soliman EL-Ghorab

B. Sc. Civil Engineering, faculty of Engineering (at Shobra),

Zagazeg University, 1986

Diploma Environmental Science, Department of Engineering,

Ain Shams University, 1996

M.Sc. Environmental Science, Department of Engineering,

Ain Shams University, 1999

A Thesis Submitted for Doctor of Philosophy in Environmental Engineering

Department of Engineering

Institute of Environmental Studies and Research

Ain Shams University

Cairo, Egypt 2002

Approval Sheet

PREDICTION OF HEAT AND POLLUTED MASS TRANSFER AFFECTING OPEN CHANNELS ENVIRONMENT

By

Eng. Entesar Abdallh Soliman EL-Ghorab

B. Sc. Civil Engineering, faculty of Engineering (In shobra), Zagazeg University, 1986
 M. Sc. Environmental Engineering, Ain Shams University, 1999

A Thesis Submitted for the Degree of Doctor of Philosophy in Environmental Engineering

This thesis has been approved

Examiner Committee

Prof. Dr. Mohamed EL-Niazy Hammad

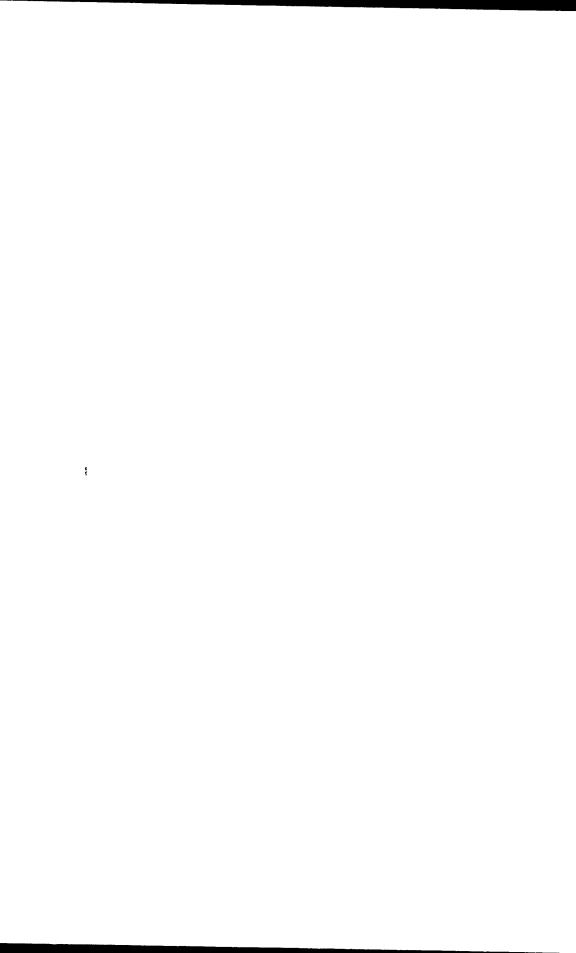
Prof. Of Irrigation & Hydraulic Department

Faculty of Engineering, Ain Shams University

Prof. Dr. Fayek Saed Mohamed Ahmed

Prof. of Chemistry

Faculty of Science - EL-Azhar University


Prof. Dr. Ali Mohamed Talaat

Prof. of Irrigation & Hydraulic Department

Faculty of Engineering, Ain Shams University

Dr. Youssef Esmail Hafez

Asst. Prof. of National Water Research Center

PREDICTION OF HEAT AND POLLUTED MASS TRANSFER AFFECTING OPEN CHANNELS ENVIRONMENT

By

Eng. Entesar Abdallh Soliman EL-Ghorab

B. Sc. Civil Engineering, faculty of Engineering (at Shobra),

Zagazeg University, 1986

Diploma Environmental Science, Department of Engineering,

Ain Shams University, 1996

M.Sc. Environmental Science, Department of Engineering,

Ain Shams University, 1999

A Thesis Submitted for Doctor of Philosophy in Environmental Engineering

Under The Supervision of

Prof. Dr. Ali Mohamed Talaat

Prof. of Irrigation & Hydraulics Department

Faculty of Engineering, Ain Shams University

Dr. Rafaa Mohamed Rashad

Lecturer of Chemistry

Faculty of Engineering - Ain Shams University

Dr. Youssef Esmail Hafez

Asst. Prof. at National Water Research Center

_	

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude and appreciation to my major professor, Dr Ali M. Talaat for the excellent and valuable guidance, advice, and the continuous encouragement throughout the work, which to a large extent has made the completion of this study possible. My grateful appreciations are extended to Dr. Rafaa M. Rashad for her helpful assistance and encouragement during work.

I wish to express my deepest appreciation and sincere thanks to Dr. Youssef E. Hafez for his assistance in the mathematical model work, the analysis and interpretation of the results.

I wish to express my gratitude to professor, Dr. Mohamed H. Amer, Chairman of Egyptian committee of irrigation and drainage (ECID) for his support and encouragement.

My Special thanks to Eng. Amgad, Eng. Ali EL-Doussoki and Mrs. Azza Eid and all the staff of the Strategic Research Unit.

I would like to thank Professor Dr. Mona EL-Kady, Chairman of National Water Research Center, (NWRC), Ministry of Water Resources and Irrigation for her venerable support.

A special gratitude and dedication for this work is due to my husband, to my sons and to my parents for their support, patience and encouragement throughout this research. Finally, thanks be to my God without whom nothing can be achieved.

ABSTRACT

The objective of this investigation is to predict the distribution of heat and mass distributions resulting from polluting sources. This was conducted by developing a two-dimensional mathematical model, which was calibrated and verified with an experimental data. The developed 2-D mathematical model consists of a finite element based hydrodynamic, heat and mass transport models for predicting the velocity model, heat and mass distributions.

The hydrodynamic model Hafez 2001 consists of the Reynoldsaverage turbulent stress equations written in two-dimensional horizontal The finite element method is used for solving the resulting governing equations of the hydrodynamic model. An equation is developed relating the turbulent viscosity to the jet to river velocity ratio. The hydrodynamic model proved successful in predicting the circulation eddy geometry behind a jet discharging into an open channel. predictions compared very well with the measurements for various jet to channel velocity ratios ranging from 0.63 to 10 and jet to channel momentum ratio ranging from 0.04 to10. The latter covers a wide spectrum range of variation in practical problems. The experimental data used are those of Mikhail et al.1975, Strazisar and Prahl 1973, and the numerical data of McGuirk and Rodi 1978. With increasing velocity ratio and momentum flux, the length of recirculation zone increases as well as the inner height of the jet penetration. The successful predictions of the hydrodynamic velocity field gave confidence in using the hydrodynamic data for heat and mass predictions. This is due to the significant influence of the hydrodynamic field on the transport phenomena of either the heat or mass.

In order to predict the heat and mass distributions, the diffusion coefficients are required since there is no standard method for their determination. An engineering approach for solving this problem was implemented by assuming trial values for these coefficients and comparing the predictions with measured data. When the predictions matched the measured data with an acceptable tolerance, the assumed coefficients were also considered acceptable.

The results of the transport model proved to be successful in predicting the temperature distribution. The predictions compared well with experimental data (El-Ghorab, E. A. S., 1999). One data set was used for calibration, while three different data sets were used for verification of the model

The mass transport model is formed by solving the 2-D advection-dispersion equation with inclusion of a decay term. The decay term represents the loss of the material due to settling. Several runs were conducted and their results were in good agreement with the theory. For non-settling particles, the mass transport model yielded results identical to the heat transport model. For particles with non-zero settling velocity, more mass was lost from the water column to the channel bed as the fall velocity of the material increased.

A case study for El-Kureimat power plant cooling system discharge was tested using the developed mathematical model. The purpose was to predict the thermal distribution coming out from an inclined outfall of a power plant. The predicted results were compared with the results of a distorted physical model with a horizontal scale of 1:80 and a vertical scale of 1:60 of the power plant. The result of the comparison showed the same trend and almost the same values for the temperature distribution.

The developed numerical model proved to be a valuable tool for predicting the effects of side discharges of mass and heat on adjacent open channels. Therefore, this proved the success of the modeling framework and finite element in solving complex 2-D problems.