

Using Virtual Reference Stations "VRS" in Positioning

A Thesis
Submitted to the Faculty of Engineering
Ain Shams University for the Fulfillment
Of the Requirements of M. Sc. Degree
In Civil Engineering - Surveying

Prepared by HAITHAM MOHAMED EMAD ABEL-HAMED HAROUN

GNSS & GIS Segment Manager Middle East and East Mediterranean, Leica Geosystems AG B.Sc. in Surveying Engineering, June 2008 Shoubra Faculty of Engineering, Benha University

Supervisors Dr. Mohamed El-HusseinyEl-Tokhey,

Professor of Surveying and Geodesy Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. Tamer Fathy Fath-Allah,

Associate professor of Surveying and Geodesy Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. Ahmed Emad Ragheb

Associate professor of Surveying and Geodesy Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Faculty of Engineering Ain Shams University

Using Virtual Reference Stations "VRS" in Positioning

A Thesis For

M.Sc. Degree in Civil Engineering

By

HAITHAM MOHAMED EMAD ABEL-HAMED HAROUN

GNSS & GIS Segment Manager Middle East and East Mediterranean, Leica Geosystems AG B.Sc. in Civil Engineering, June 2008 Shoubra Faculty of Engineering, Benha University

THESIS APPROVAL

Prof. Dr. Mohamed El-HusseinyEl-Tokhey, Professor of Surveying and Geodesy Faculty of Engineering, Ain Shams University, Cairo, EGYPT Prof. Dr. Abdallah Ahmed Saad Professor of Surveying and Geodesy Shoubra Faculty of Engineering, Benha University Prof. Dr. Ibrahim Fathy Shaker Professor of Photogrammetric Surveying Faculty of Engineering, Ain Shams University

Date:..../ 2016

Researcher Data

Name	Haitham Mohamed Emad Abdel-Hamed Haroun
Date of Birth	23 rd August 1985
Place of Birth	Cairo, Egypt
Academic Degree	B.Sc. in Surveying Engineering
Field of Specialization	Surveying and Geomatics Engineering
University Issued the Degree	Benha University – Shoubra Faculty of Engineering
Date Issued the Degree	2008
Current Job	GNSS & GIS Segment Manager Middle East and East Mediterranean, Leica Geosystems AG

Statement

This Thesis is submitted to Ain Shams University, Faculty of Engineering for the degree of M. Sc. in Civil Engineering.

The work included in this thesis was carried out by the author from 2010 to 2016 and no part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Date: //2016

Signature:

Name: Haitham Mohamed Emad

Abstract

To reach centimeters or millimeters levels accuracy of positioning, this requires using of precise dual-frequency carrier phase observations. Furthermore, these observations are usually processed using (DGPS) technique, such as real time kinematic (RTK) or post-processing (PP) where both methods have many variations based on the same concept.

The virtual reference station (VRS) technique helps satisfying this requirement using a network of reference stations connected to each other or to a control center. In contrast, GNSS network of many reference stations often make use of multiple reference stations as the reference station transmitting the corrections.

Hence, the main objective of the current research is to study the multi-reference station approach in general, especially the VRS approach versus the classical survey, showing how this new approach can help effectively in survey work.

A lot of data were used from the Egyptian CORS network for post processing, stations locations, stations setup, correcting the internal and external loops in the network and connecting the network with the IGS 2008; On the other hand, a real time data were used in Dubai by the (DVRS) network to examine the network accuracy and reliability.

A field test was done on both networks in (PP) and (RTK) modes, showing the 2D and 3D accuracies up to mm in the Egyptian CORS with (PP) technique while the accuracy for DVRS is from 10 to 12mm in 2D coordinates and from 18 to 22mm in 3D coordinates.

Another test was done on the Egyptian VRS to show the influence of observation time on the coordinates accuracy, the results showed that after 15minutes the accuracy is acceptable – less than 10mm for (PP) and after 30 minutes its stable at almost 8 to 10mm for baselines up to 35km.

For showing the differences in using single base station and multireference station network from accuracy side, a field test was done in Dubai on the (DVRS), using sets of points measured by both single base and the network, it showed that the accuracy is almost the same. On the other hand, the (VRS) has better performance concerning the resulted standard deviation of the obtained coordinates.

Acknowledgement

Though only myname appears on the cover of this dissertation, a great people have contributed to its production. I owe my gratitude to all those people who have made this dissertation possible and because of whom my graduate experience has been one that I will cherish forever.

My deepest gratitude is to my supervisor, Prof. Dr. Mohamed El-Tokhy. I have been amazingly fortunate to have a supervisor who gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. He taught me how to question thoughts and express ideas. His patience and support helped me overcome many crisis situations and finish this dissertation.

I am grateful to Prof. Dr. Ibrahim Shaker for his support, help as much as he can; he was not only helping me but all students as much as he can do.

Dr. Tamer Fathy, has been always there to listen and give advice. I am deeply grateful to him for the long discussions that helped me sort out the technical details of my work.

Thanks and appreciations go to Dr. Ahmed Ragheb for taking lots of his time through years, encouraging the use of correct grammar and consistent notation in my writings and for carefully reading and commenting on countless revisions of this manuscript.

Most importantly, none of this would have been possible without the love and patience of my family. My immediate family, to whom this dissertation is dedicated, has been a constant source of love, concern, support and strength all these years. I would like to express my heart-felt gratitude to my family. My extended family has aided and encouraged me throughout this endeavor. I have to give a special mention for the support given by Amr Mosa, my boss Ken West, and all people in public works department in Ain Shams University for helping me throughout my thesis work.

Table of Contents

Statement I

	hatmaat	TT
А	hstract	

AcknowledgementIV		
List of	AbbreviationsXII	
List of	FiguresXVII	
List of	TablesXX	
Chapte	r 1: Introduction1	
1.1	Limitations of Classical Survey versus Using CORS and VRS3	
1.2	The Need of Using Multi Reference Station Network and VRS.4	
1.3	Virtual Reference Station Definition5	
1.4	CORS Networks for Kinematic Applications6	
1.5	The Master-Auxiliary Concept (MAC)7	
1.6	Strengths and Weaknesses of VRS versus FKP7	
1 7	GPS Surveying 9	

1.8	Resea	arch Objectives
1.9	Thesi	s Outline
Chapt	ter 2: 1	The VRS Concept14
2.1	VRS	Procedure14
2.2	Contr	ol Server's Software17
2.3	VRS	Error Interpolation
2.4	Settin	ng up the Server's Software19
2.5	Typic	cal Set-up for the VRS Hardware19
2.6	Steps	of Using VRS Network in Field Work21
2.7	Opera	ating Reference Station Networks22
2.8	Tropo	ospheric and Ionospheric Error Modeling in VRS23
2.	8.1 T	ropospheric Modeling in VRS24
	2.8.1.1	Impact of the Used Tropospheric Model on the Solution in VRS
	Approac	h24
	2.8.1.2	The Impact of the Tropospheric Differences in VRS
	Approac	h 26
2.	8.2 F	Residual Errors as Result to Differences of the Tropospheric
Μ	Iodel in V	/RS Approach

2.9	The Ionospheric Error Modeling	30
2.9.	.1 Modelling the Residual Errors of Ionospheric influence in t	the
VRS	5	30
Chaptei	er 3: The Egyptian Virtual Reference Station Network .	31
3.1	Objectives of the Egyptian VRS Network	33
3.2	Network Coverage	33
3.3	Stations Locations Selection	34
3.4	Final Design for the Egyptian VRS Network	35
3.5	Reference Station Installation	39
3.5.	.1 Reference Station Block Diagram	39
3.5.	.2 Reference Station Design Criteria	40
3.5	.3 Environmental Specification of the Stations	40
3.5.4	.4 Reference Station Receiver	41
3.5.	.5 Sarian DR 6410 High Speed Router	42
3.5.0	.6 External Cabinet Components	42
3.5.7	.7 Antenna Mast	44
3.6 Control Center Components44		
3.6.	.1 Router and Backup Router	44

3	.6.2	Server and Backup Server 4	.5
3	.6.3	Communication Options	ŀ5
3	.6.4	Control Center Software 4	8
	3.6.4.1	Network RTK Software 4	8
	3.6.4.2	GPStream Software 5	1
3	.6.5	Connection Router 5	2
3	.6.6	Splitter5	2
3.	.6.7	Rover Integrity Information Pane 5	2
	3.6.7.1	Rover Integrity – Connections 5	3
	3.6.7.2	Rover Integrity – NMEA 5	3
	3.6.7.3	Rover Integrity – Reference Positions 5	3
	3.6.7.4	Rover Integrity – Position Statistics 5	3
	3.6.7.5	Rover Integrity – Position Errors 5	4
	3.6.7.6	Rover Integrity – DOP 5	5
	3.6.7.7	Rover Integrity – Number of Satellites 5	5
	3.6.7.8	Rover Integrity – Statistics of Initialization Time 5	6
	3.6.7.9	Rover Integrity – Initialization Time 5	7
	3.6.7.1	0 Compact RINEX 5	7

3.6.7.	11 Receiver Module Software - RTKNet 57
3.6.8	Control Center Servers
3.7 Sur	rvey Methodology58
3.8 Cal	culations Procedure for the network Permanent Stations
Coordinat	res59
3.8.1	External Geodetic Connection Post Processing 60
3.8.2	Internal Geodetic Connection Post Processing 60
3.9 Ne	twork Adjustment and Results Summary of Data Processing
Statistics.	61
3.9.1	External Network ITRF 2008 Connection Results 61
3.9.2	Internal Network Adjustment Results
3.10	Coordinate System Transformation in Egypt67
3.10.1	Checking the Differences between HARN and IGS 67
3.10.2	Transformation between HARN and IGS Reference Frames 67
Chapter 4:	Observation Duration Influence on the Network
Accuracy of	f the Egyptian VRS in Post Processing Mode74
4.1 Ob	servation Duration Influence Test Results in PP Mode74
<i>A</i> 1 1	Results and Discussion 78

Chapte	r 5: Dubai Virtual Reference Stations Network	83
5.1	Introduction	83
5.2	The Reasons of Establishing the DVRS	84
5.3	Survey Methodology and Network Design	85
5.4	Network Setup including HW and SW configurations	86
5.4.	1 Stations Components	87
5.4.	2 Control Center Components	87
5.4.	3 Network Processing Software	88
5.5	Testing the DVRS	89
5.6	RTK Using Single Base Station versus RTK Using VRS	
Netw	ork	92
5.7	RTK Using Service Satellites and Future Approaches	93
Chapte	r 6: Summary, Conclusions and Recommendations	95
6.1	Summary	95
6.2	Conclusions	96
6.3	Recommendations	97

List of Abbreviations

AC – Alternating Current

ADSL – Asymmetric Digital Subscriber Line

CMR - Compact Measurement Record

CORS - Continuously Operating Reference Station

D/A - Digital to Analog

DGNS - Doppler GPS Navigation System

DGNSS - Differential Global Navigation Satellite System

DGPS - Differential Global Positioning System

DVRS - Dubai Virtual Reference Station

E - East

EGNOS - European Geostationary Navigation Overlay Service

ESA – Egyptian Survey Authority

EUREF – European Reference Frame

EVRS – Egyptian Virtual Reference Station Network

FKP – Flachen Korrectur Parameter (in Germany) = network area corrections

GDOP - Geometric Dilution of Precision