

Ain Shams University Faculty of Engineering Structural Engineering Department

THE EFFECT OF CEMENT TYPE ON THE RESISTANCE OF CONCRETE AGAINST CHLORIDE PENETRATION

By

Eng. Islam Fawzi Kamel Noshi

B.Sc. Civil Engineering Ain Shames University, 2007

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Structural Engineering

Supervisors

Dr. Mona Mostafa Abdel Wahab

Associate Professor
Structural Engineering Department
Faculty of Engineering - Ain Shams University

Dr. Mohamed Ragab Abdel Megeed

Assistant Professor
Structural Engineering Department
Faculty of Engineering - Ain Shams University

بسم الله الرحمن الرحيم

APPROVAL SHEET

Thesis

(Supervisor)

: Master of Science in Civil Engineering (Structural)

Researcher Name	: Islam Fawzi Kamel Noshi Hu	ssain		
Thesis Title	Thesis Title : The Effect of Cement Type on the Resistance of			
	Concrete against Chloride Pe	enetration		
Examiners Com	mittee:	<u>Signature</u>		
Prof. Dr. Tarek A	i El-Sayed			
Professor of Properties Faculty of Engineering	and Testing of Materials g - Helwan University			
Prof. Dr. El -Sayeo	d Abdel Raouf Nasr			
<u>-</u>	s and Testing of Materials g - Ain Shams University			
Dr. Mona Mostafa	Abdel Wahab			
	Structural Engineering Department g - Ain Shams University			

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Thesis : Master of Science in Civil Engineering (Structural)

Student Name: Islam Fawzi Kamel Noshi Hussain

Thesis Title: The Effect of Cement Type on the Resistance of

Concrete against Chloride Penetration

Supervision Committee:	Signature
Dr. Mona Mostafa Abdel Wahab Associate Professor - Structural Engineering Department Faculty of Engineering - Ain Shams University	
Dr. Mohamed Ragab Abdel Megeed Assistant Professor - Structural Engineering Department Faculty of Engineering - Ain Shams University	

INFORMATION ABOUT THE RESEARCHER

Name: Islam Fawzi Kamel Noshi Hussain

Date of Birth: August 16th, 1984

Place of Birth: Egypt

Qualifications: B.Sc. Degree in civil Engineering (Structural Engineering)

Faculty of Engineering - Ain shame University (2007)

Diploma in Civil Engineering (Structural Engineering)

Faculty of Engineering - Ain shams University (2009)

ACKNOWLEDGMENT

I would like to express my sincerest appreciation to **Dr. Mona Mostafa Abdel Wahab** for her direct supervision, continuous support, valuable guidance, and for giving me the opportunity to investigate such an interesting point of research.

I would like to extend sincere thanks and appreciation to **Dr. Mohamed Ragab Abdel Megeed** for his continuous support valuble assistance and providing the guidance necessary to complete this research.

I would like to thank the technical staff of the Laboratory of Properties and Testing of Materials at Ain Shams University for their hard work during the experimental phase of the research.

I would like to deeply thank my family, and appreciate the sincere help, support and encouragement of my teacher, parents special my mother and wife Mai Rabie to whom I dedicate this thesis for without their patience and encouragement I would not have been able to accomplish this work.

Last but not least I would like to dedicate this thesis to my son Saif EL-Dain

Islam Fawzi Kamel

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, for the degree of

Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by the author in the Structural

department, Faculty of engineering, Ain Shams University. No part of this thesis

has been submitted for a degree or qualification at any other University or Institute.

Date: / / 2015

Name: Islam Fawzi Kamel

Signature:

II

Ain Shams University
Faculty of Engineering
Department of Structural Engineering

Abstract of the M.Sc. Thesis Submitted by

Eng.: Islam Fawzi Kamel

ABSTRACT

Chloride induced corrosion of embedded reinforcement is one of the most severe durability problems of concrete structures and is one of the major causes of the short service life of such structures. When a concrete structure is exposed to aggressive environments, soluble chlorides can penetrate into concrete cover by absorption through its surface, diffusion in interconnected capillary pores or direct access through cracks in the concrete. Chloride ions act to depassivate the steel surface so that corrosion is initiated and then it participates in the corrosion process as well. Therefore, the resistance to chloride ions penetration becomes more important in the design and construction of concrete structures in marine environment.

This thesis studied the effect of cement types on the resistance of concrete against chloride penetration for given compressive strength classes. These cements included ordinary Portland cement (CEM I 42.5N), Portland blast furnace slag cement (CEM II /A-S 32.5N), sulfate resisting Portland cement (SRC 42.5N), and using supplementary cementing material by substituting ordinary Portland cement (CEM I 42.5N) with 15% silica fume. For each binder type, four concrete mixtures of grades C30, C35, C40 and C45were produced.

Rapid chloride ion penetration test according to ASTM C 1202 was conducted. In addition, electrical resistivity and capillary water absorption tests were carried out.

Ш

In order to characterize the concrete quality, compressive strength of the specimens were determined at 7 and 28 days.

From the analysis and the discussion of test results obtained in this research, it was found that concrete produced using ordinary Portland cement had lower rapid chloride permeability, while concrete produced using sulfate resisting Portland cement had the highest chloride permeability for all concrete grades. The use of silica fume as a supplementary cementing material had a substantial effect on reducing the chloride permeability of concrete. It can also be noticed that concrete of higher grade had higher resistance to chloride penetration.

Based on the test results obtained from the experimental study, it was concluded that substituting ordinary Portland cement by mineral additives is one of the effective ways of minimizing the chloride diffusion of concrete.

TABLE OF CONTENTS

		Page
ACK	NOWLEDGMENT	I
STAT	FEMENT	II
ABST	ГКАСТ	III
TABl	LE OF CONTENTS	V
LIST	OF FIGURES	X
LIST OF TABLES		
СНА	PTER (1): INTRODUCTION	1
1.1	General	1
1.2	Research Objectives	1
1.3	Thesis Organization	2
СНА	PTER (2): LITERATURE REVIEW	3
2.1	Introduction	3
2.2	Chloride Penetration in Concrete	3
	2.2.1 Forms of chlorides	6
	2.2.1.1 Free chlorides	6
	2.2.1.2 Physically adsorbed chlorides	6
	2.2.1.3 Chemically adsorbed chlorides	6
	2.2.2 Chloride Attack	6
	2.2.3 Electro-Mechanical Attack	8

2.3	Trans	port Med	chanism	10
	2.3.1	Permeal	bility	11
	2.3.2	Diffusio	on	12
	2.3.3	Electro-	migration	13
	2.3.4 Absorption (Capillary suction)		14	
	2.3.5 Adsorption and desorption		15	
	2.3.6	Binding		15
	2.3.7 Combined mode		16	
2.4	Chlor	ide Diffu	asion	17
	2.4.1	Factors	Influencing Chloride Diffusion	18
		2.4.1.1	Porosity	18
		2.4.1.2	Water cement materials ratio	19
		2.4.1.3	Cement type and cementing materials	19
		2.4.1.4	Types of coarse aggregates	23
		2.4.1.5	Curing regimes	25
		2.4.1.6	Age and moisture condition of concrete	25
	2.4.2 Changes in Diffusion Coefficient with Time		26	
	2.4.3	Others		28
		2.4.3.1	Temperature	28
		2.4.3.2	Type of chloride solution	29
		2.4.3.3	Construction defects	29
2.5	Chlor	ide Bind	ing	29
	2.5.1 Chloride Binding Mechanism			31
	2.5.2 Factors Affecting Chloride Binding			32
		2.5.2.1	The role of ettringite, Portlandite, and	
			Friedel's salt in chloride binding	32

	2.5.2.2	The chloride binding ability of the C-S-H	
		phase	33
	2.5.2.3	Inclusion of binding In the chloride	
		diffusion equation	34
	2.5.2.4	Influence of chloride concentration in	
		chloride binding	36
	2.5.2.5	Influence of C3A on binding	37
	2.5.2.6	Influence of alkali and hydroxide ion	
		concentration on chloride binding	38
	2.5.2.7	Influence of cation type on chloride binding	39
	2.5.2.8	Influence of sulphate ions type on chloride	
		binding	40
	2.5.2.9	Influence of SCM on chloride binding	41
	2.5.2.10	Influence of cement water ratio on chloride	
		binding	42
	2.5.2.11	Influence of super plasticizer on chloride	
		binding	43
	2.5.2.12	Influence of carbonation on chloride	
		binding	43
	2.5.2.13	Influence of temperature on chloride	
		binding	43
2.6	Factors Affec	ting Concrete Resistance to Chloride	
	Permeability		44
	2.6.1 Factors r	elating to concrete	44
	2.6.2 Factors r	elating to the structure	45
2.7	Accelerated Di	ffusion Test Methods	47

	2.7.1	Resistivity techniques	47
	2.7.2	Rapid chloride permeability test (ASTM C1202)	52
	2.7.3	Sorptivity Test (ASTM C1585)	55
	2.7.4	Salt Bonding test (AASHTO T259)	57
	2.7.5	Bulk diffusion test (Nord-Test NTBUILD 443)	60
	2.7.6	Pressure penetration techniques	61
CH	APTER	(3): EXPERIMENTAL PROGRAM	64
3.1	Introd	uction	64
3.2	Resear	Research Program	
3.3	.3 Used Materials		65
	3.3.1	Cement	65
	3.3.2	Silica fume	67
	3.3.3	Fine aggregate	68
	3.3.4	Coarse aggregate	68
	3.3.5	Mixing water	69
	3.3.6	Super-plasticizer	70
3.4	Mix Pr	Mix Proportions	
3.5	Prepara	ation of Test Specimens	71
3.6	Testing	g S	73
	3.6.1	Compression test	73
	3.6.2	Electrical resistivity	73
	3.6.3	Rapid chloride permeability test	76
	3.6.4	Sorptivity test	78
СН	APTER	(4): RESULTS AND DISCUSSION	80
4.1	Introduc	etion	80
4.2	2 Compression Test Results		80

4.3	Electrical Resistivity Test Results	83
4.4	Rapid Chloride Permeability Test Results	85
4.5	Sorpitivity Test Results	88
CH	APTER (5): CONCLUSION AND RECOMMENDATION	90
5.1	Introduction	90
5.2	Conclusions	90
5.3	Recommendations	91
5.4	Further Study	92
REFRENCES		