Anesthetic Management of Congenital Heart Disease "Right to Left Shunt" In Adults Undergoing Non Cardiac Surgery

Essay

Submitted for partial fulfillment of the master degree of

In Anesthesiology

By:

Engy Wagdy Wissa Marcos

M.B.B.ch, Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Fekry Fouad Ahmed El Bokl

Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Alfred Maurice Said Boktor

Assistant Professor of Anesthesia and Intensive care Faculty of Medicine, Ain Shams University

Dr. Rania Magdy Mohamed Ali

Lecturer of Anesthesia and Intensive care Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2014

First and foremost, I feel always indebted to **God** the most kind and most merciful for his generous help throughout my life. Thanks are all due to Him for enabling me to accomplish this work and for blessing it until it has reached its end.

I wish to express my thankfulness, profound gratitude and appreciation to **Professor Dr./Fikry Fouad Ahmed El Bokl**, Professor of Anesthesia and Intensive care, Faculty of Medicine, Ain Shams University for his great supervision, advice and fruitful criticism that have been of great help in performing this work.

Also, I assert my deepest thanks to **Dr./Alfred Maurice Said Boktor**, Assistant Professor of Anesthesia and Intensive care, Faculty of Medicine, Ain Shams University for his constant effort, valuable instructions, inspiring guidance and continuous unlimited support throughout this work. I sincerely appreciate all the encouragement and tremendous help provided by him.

And, I am eternally grateful to **Dr./Rania Magdy Mohamed Ali,** Lecturer of Anesthesia and Intensive care, Faculty of Medicine, Ain
Shams University for her gentle manners, kind supervision and her trust in
my performance. I would like to thank her for her great effort in revising and
writing this work. I find no words by which I express my gratitude for them
all for their support, tender guidance, advice, generous help and guiding
comments during supervising this work.

Finally, I would like to express my deepest gratitude to all my family who all supported me during my work.

No words can express my affection and gratitude to them, for their understanding tolerance in the bad times, enthusiasm in the good times and in all times their unconditioned love, tenderness and joy.

My special acknowledgment will go to my mother for her guidance, caring and love. I owe her every achievement through my life. Also, thanks for my husband for his tender support, continuous help and giving love.

Engy Wagdy Wissa Marcos

Contents

List of Abbreviations	i
List of Tables	V
List of Figures	vi
Introduction and Aim of the Work	1
Chapter One: Pathophysiology of Adult Congenital Heart Disease with Right-to-Left Shunt	s 5
Chapter Two: Issues of Caring for Adult Patient with "Right-to- Left Shunt" Congenital Heart Disease Proposed for Non-Cardiac Surgery	31
Chapter Three: Preoperative Management of Adult Congenital Heart Disease Patient with Right-to-Left shunt Undergoing Non-Cardiac Surgery	49
Chapter Four: Intraoperative Management of Adult Congenital Heart Disease Patient with Right-to-Left Shunt Undergoing Non-Cardiac Surgery	67
Chapter Five: Postoperative Management of Adult Congenital Heart Disease Patient with Right-to-Left Shunt Undergoing Non-Cardiac Surgery	104
Summary	124
References	126
Arabic Summary	

List of Abbreviations

ABGs : Arterial blood gases

ACC/AHA: American College of Cardiology/American

Heart Association

ACHD : Adult (with) congenital heart disease/s

ACOG: American College of Obstetrics and

Gynecology

AHA : American Heart Association

A-P : Aorto-pulmonary

ASA : American Society of Anesthesiologists

ASD : Atrial septal defect AV : Atrioventricular

AVSD : Atrioventricular septal defect

BP : Blood pressure

B-T shunt : Blalock-Taussig shunt

CCL : Cardiac catheterization laboratory

CHD/s : Congenital heart disease/s
CHF : Congestive heart failure

CONCOR programme: Dutch National Registry and DNA-

Bank of Patients with Congenital Heart Disease in the Netherlands, named CONCOR

(CONgenital CORvitia)

COP : Cardiac output
CRP : C- reactive protein
C-section : Caesarean section
CT : Computed tomography
CVP : Central venous pressure

2 D-echo : Two dimensions-echocardiographyd-TGA : Dextro-transposition of great arteries

ECG : Electrocardiography
ECHO : Echocardiography
ENT : Ear, Nose and throat

ESC : European Society of Cardiology

ETT : Endo-tracheal tube

List of Abbreviations (Cont.)

FiO₂ : Fractional inspired oxygen concentration

FRC : Functional residual capacity

Hct : Hematocrit

HIT : Heparin induced thrombocytopenia

HR : Heart rate HTN : Hypertension

IART : Intra-atrial re-entrant tachycardiaICD/s : Implantable cardioverter-defibrillator/s

ICU : Intensive care unit IE : Infective endocarditis

IM : Intra-muscular

iNO : Inhalational nitric oxide

INR : International Normalized Ratio

IPPV : Intermittent positive-pressure ventilation

IV : Intra-venous

IVC : Inferior vena cava

L : Left/Levo

LA : Left atrium /atrial
LAP : Left atrial pressure
LMA : Laryngeal mask airway

LV : Left ventricle

LVOT : Left ventricular outflow tract

MAPCAs : Major aorto-pulmonary collateral arteries

MPA : Main pulmonary artery

MRI : Magnetic resonance imagingNPO : Nil per os = Nothing by mouthNYHA : New York heart association

OR : Operating room

PA/IVS : Pulmonary atresia with intact ventricular

septum

PA/s : Pulmonary artery/ies

PA/VSD: Pulmonary atresia with ventricular septal

defect

List of Abbreviations (Cont.)

PaCO₂ : Arterial CO₂ tension PaO₂ : Arterial oxygen tension PAP : Pulmonary artery pressure

PAPVD : Partial anomalous pulmonary venous drainage PAPVR : Partial anomalous pulmonary venous return

PBF : Pulmonary blood flow

PCWP : Pulmonary capillary wedge pressure

PDA : Patent ductus arteriosus

PEEP : Positive end-expiratory pressure

P_{ET}CO₂ : End-tidal carbon dioxide PFO : Patent foramen ovale PHT : Pulmonary hypertension

PPCs : Postoperative pulmonary complications

PR : Pulmonary regurgitation
PS : Pulmonary stenosis
PT : Prothrombin time

PTT : Partial thromboplastin time PVR : Pulmonary vascular resistance

Q_P : Pulmonary blood flow/perfusion = blood flow

through the lungs

 Q_P/Q_S : Pulmonary to systemic blood flow (perfusion)

ratio

Q_S : Systemic blood flow/perfusion

RA : Right atrium/atrial RAP : Right atrial pressure

RBBB : Right bundle branch block

R-L, R-to-L: Right-to-left

RV : Right ventricle/ventricular
RVOT : Right ventricular outflow tract
SaO₂ : Arterial oxygen saturation
S-P : Systemic-to-pulmonary
SnO : Oxygen seturation

SpO₂ : Oxygen saturation SV : Systemic ventricle

List of Abbreviations (Cont.)

SVC : Superior vena cava

SVR : Systemic vascular resistance

TAPVD : Total anomalous pulmonary venous drainageTAPVR : Total Anomalous Pulmonary Venous Return

TEE : Trans-esophageal echocardiographyTGA : Transposition of the great arteries

TOF : Tetralogy of Fallot

vs. : Versus

VSD : Ventricular septal defect VT : Ventricular tachycardia

WBC : White blood cell

WPW : Wolff-Parkinson-White syndrome

List of Tables

Table	Title of Table	Page
1	Distribution of diagnoses of ACHD with R-to-L shunt	6
2	Classification on the basis of pulmonary blood flow	7
3	Classification of adult congenital heart disease with right- to-left shunt by complexity	9
4	Most frequent specific arrhythmias in CHD lesions	34
5	Summarizes important pre-anesthetic considerations in the CHD population	56
6	Surgery-related predictors for risk of perioperative cardiac complications	59
7	Risk factors specific to ACHD population undergoing non-cardiac surgery and their management strategies	102

List of Figures

List of Figures				
Fig.	Title of Figyres	Page		
1	Tricuspid atresia	10		
2	Pulmonary atresia with intact ventricular	10		
	septum			
3	Patent foramen ovale	11		
4	Simultaneous recordings of RAP and LAP	12		
	showing: LAP is lower than RAP during			
	nadir of pressure "x" and "y"; this fact that			
	explains the 2 right-to-left components of			
_	the shunt			
5	Tetralogy of Fallot	14		
6	Valvular pulmonary stenosis with PFO	15		
7	Pulmonary atresia with VSD	16		
8	Eisenmenger's Syndrome in association	21		
	with a ventricular septal defect, and the			
	resultant reversal of the intracardiac shunt			
	are shown			
9	Normal heart versus Ebstein's anomaly	24		
10	Schematic drawing of the lowered	24		
	insertion of the tricuspid valve into the RV			
	and R-to-L interatrial shunting	• 0		
11	Different types of total anomalous	28		
10	pulmonary venous return			
12	Determinants of cardiac output and oxygen	68		
1.2	delivery	60		
13	Hemodynamic consequences and goals for	69		
1.4	intracardiac R-to-L shunting lesions	7.0		
14	Factors that influence the distribution of	70		
	blood flow between the systemic and			
1.5	pulmonary circulations are shown	72		
15	Hemodynamic consequences and goals for	73		
	intracardiac mixing lesions			

List of Figures

Fig.	Title of Figures	Page
16	Hemodynamic consequences and goals for reguritant lesions	75
17	Hemodynamic consequences and goals for obstructive lesions	76
18	PVR and ventilation	90
19	Arterial oxygen saturation (SaO_2) and systemic venous oxygen saturation $(S_{sv}O2)$ as a function of $Q_P:Q_S$ for different values of pulmonary venous oxygen saturation $(S_{PV}O2)$	113

Introduction

Congenital heart defects are the most common group of inborn defects, occurring in approximately 8 in 1,000 live births. It is estimated that approximately 30,000 children are born annually with congenital heart diseases (CHD). In the era before the development of pediatric cardiac surgery, the majority of untreated patients born with congenital heart disease die in infancy or childhood, and only 15-25% survive into adulthood. Those who survive were the patients who have a mild form of the disease that has allowed them to survive without surgical or interventional cardiac catheterization. (*Deanfield et al.*, 2003)

Advances in prenatal diagnosis, interventional cardiology, paediatric cardiac surgery, anesthesia, and critical care over the past 40 years have resulted in survival of approximately 90% of these children beyond their third decade of life. This dramatic success has created a rapidly increasing population of adult patients with congenital heart disease (CHD) so the vast majority of the patients with CHD -seen in the adult outpatient setting- are patients who have had previous early surgical definitive repair, catheter-based intervention, palliative surgery or even heart transplantation as their only option. (*Fleisher et al.*, 2007)

The spectrum of CHD ranges widely from relatively mild defects -seen in simple isolated defects- to lesions of moderate to severe complexity typically characterized by several coexistent malformations. As regards adult patients with CHD, they can broadly be divided into three categories: those who have undergone some sort of reparative operation; those who have undergone a palliative operation; and finally, there is a group of patients who have not previously undergone a corrective or palliative procedure. Survival rates in CHD are influenced by many factors, including year of birth, age at diagnosis, complexity of the pathology, and whether the

lesion(s) has been palliated or surgically corrected, taking in consideration that adult patients with structural heart disease who have undergone repair of what are considered uncomplicated lesions may be indiscernible from unaffected patients while other patients with unrepaired CHD -who were not considered to have hemodynamic compromise worthy of intervention -have incurred severe physiologic perturbations as sequelae of their unrepaired CHD and no longer candidates for repair of their structural heart lesions and this results in patients with complications who are constituting an extremely high risk group. (Weiss, 2004)

Adult patients with moderate to severe CHD undergoing non-cardiac surgery should be referred and followed up in a comprehensive adult CHD centre. This was recommended by a task force of the American College of Cardiology, American Heart Association and the Canadian Cardiovascular Society. These centres include cardiologists, heart surgeons, and cardiac anaesthesiologists with specialized training extensive experience in the field so the patient would obtain the appropriate consultation; and where there intraoperative trans-oesophageal echocardiography availability; and the full range tests of cardiac function and perfusion; for adequate assessment, monitor and management. But unfortunately as this population grows, patients will inevitably seek urgent care in a variety of centres, including some that do not meet all of the standards set out by the American Heart Association. (Therrien, Gatzoulis et al., *2001*)

The most frequently encountered coexisting medical disorders -that may be a direct result of CHD-induced physiology or a result of age-related acquired derangement-should be considered as well as the anaesthetic and surgical techniques employed in these procedures and their hemodynamic consequences. Also the medications required for these unique patients need to be considered along with

Introduction and Aim of The Essay

their inherent side effects. Stratification into high- or low-risk surgery must be well established where it is based on whether the operation is elective or emergent and major or minor. (Weiss, 2004)

Here we are especially focusing on CHD (right-to-left shunting), that include those anatomical heart defects that produce a limitation in pulmonary blood flow or result in mixing of oxygenated and deoxygenated blood. Both conditions lead to decreased blood oxygen content and cyanosis. Unlike the acyanotic forms of congenital heart disease, the majority of patients with cyanotic congenital heart disease will have had at least one and often several previous interventions before adulthood. With time, compensatory physiology will evolve and produce abnormal loading conditions and possible impairment in ventricular function. Many of the compensatory changes are imperceptible and cause little impairment in function, whereas others cause significant cardiovascular compromise. (*Khairy et al.*, 2007)

A primary goal of this essay is to care for adult with congenital heart disease (ACHD), to diminish cardiac-related morbidity and to avoid adverse perioperative events during undergoing non-cardiac surgery in the presence of uncorrected, palliated, or corrected lesions. Of utmost importance in this essay is having a basic understanding of the most common congenital cardiovascular defects as applied to the adult age group regarding the native anatomy, physiology, surgical strategies, and late outcome of the defect under consideration.

The Aim of the Essay

The ultimate goal of this essay is to provide the anesthesia care provider with an understanding of the basic underlying anatomy and associated physiology of the most common congenital heart defects -with right to left shunts- as applied to the adult age group. It also provides an overview of the long-term consequences and the preoperative and intraoperative implications of those CHD when undergoing non-cardiac surgery and the potential hemodynamic consequences of various anaesthetic and surgical techniques; in order to diminish cardiac-related morbidity and to avoid adverse perioperative events. This will assist the anesthesia care provider in formulating a pre-operative plan and approaching any hemodynamic perturbations with the appropriate interpretation and management.

Chapter One

Pathophysiology of Adult Congenital Heart Diseases with Right-to-Left Shunt

Congenital heart diseases (CHDs) are common pathologies because they occur in 0.5% to 1% of births; among them, complex malformations -which include most of CHD with right-to-left (R-to-L)-are less frequent (0.15% of births). The recent major advances made in congenital cardiac surgery have resulted in an increased number of children born with CHD who are expected to reach adulthood. This made this population growing at a rate of 5% each year. (*Park*, *2010*)

Although patients with ACHD have an overall decreased life expectancy when compared with individuals with normal hearts, yet the 15-year survival rate is considered high being 80% and 95% for complex and simple CHD, respectively; half of the patients with complex physiology are over 25 years old. Any anesthesiologist might therefore encounter one of these patients in his daily practice. His role is pivotal in their management, during non-cardiac surgery and obstetrics. With his good understanding of the pathophysiology, and his working knowledge of how to deal with these CHDs patients, he can lead the decisions of the operative team. (*Brickner et al.*, 2000)

Patients having adult congenital heart disease (ACHD) with R-to-L present to adult physicians with the lesion distribution declared in the Dutch national registry (CONCOR programme) as shown in Table (1).