SEROPREVELANCE OF HUMAN CYTOMEGALO VIRUS IN PATIENTS WITH HEPATOCELLULAR CARCINOMA

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

BY

Mohamed Abd El Salam Abd El Wahab

M.B.,B.Ch, Faculty of Medicine – Mansura University

Supervised By

Prof. Dr. Sayed Mohamed Shalaby

Professor of Internal Medicine Ain Shams University

Prof. Dr. Noha Abd El Razek El Nakeeb

Professor of Internal Medicine Ain Shams University

Dr. Mohamed Lotfy Soliman

Lecturer of Internal Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2015

List of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	v
List of Figures	vii
Introduction	1
Aim of the work	3
Review of Literature	
Hepatocellular Carcinoma	4
• Liver Cirrhosis	44
Human Cytomegalovirus	61
• The Oncogenicity of Human Cytomegalovir	rus72
Patients and Methods	88
Results	94
Discussion	110
Summary and Conclusion	118
Recommendations	121
References	122
Arabic Summary	

List of Abbreviations

Abbreviation	Term
ADH2	Aldehyde dehydrogenase2
AFB1	Aflatoxin B1
AIH	Autoimmune hepatitis
ALDH2	Aldehyde dehydrogenase2
ALT	Alanine amino tranferase
AR	Androgen receptor
AST	Aspartate amino transferase
ATM	Ataxia telangiectasia mutated
BMI	Body Mass Index
CLD	Chronic Liver Disease
CYP17	Cytochrome P450c17 alpha
DC	Dendritic cell
EBV	Epstein Barr virus
ELISA	Enzyme-linked immuno sorbent assay
EPHx	Epoxide hydrolases
FGF	Fibroblast Growth Factor
GGT	Glutamyl transferase
GST	Glutathione-S transferases
GSTM1	Glutathione S-transferaseM1
HBsAg	Hepatitis B surface Antigen
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCMV	Human Cytomegalovirus
HCV	Hepatitis C virus

Abbreviation	Term
HIV	Human Immune deficiency virus
hTERT	Human telomerase reverse transcriptase
HV	Hepatic veins
IE	Immediate early
IF	Immuno fluorescence
IFN	Interferon
IL	Interleukin
iNOS	Isoforom of nitric oxide synthase
LB	Liver Biopsy
MAPK	Mitogen-activated protein kinase
MHC	Major histocompitability comlex
MMPs	Matrix metalloproteinases
NAFLD	Non-alcoholic fatty liver disease
NASH	Non- alcoholic Steatohepatitis
NK	Natural killer
OC	Oral contraceptive
PDGFR	Platlet derived Growth Factor receptor
PGE2	Prostaglandin E2
PI3-K	Phosphatidyl inositol3-kinase
PT	Prothrombine Time
PV	Portal vein
PVE	Portal vein embolization
TACE	Trans arterial chemo embolization
TAMS	Tumour- associated macophages
TGF	Transforming Growth Factor

Abbreviation	Term
TSP-1	Thrombospodin
uPAR	Urokinase receptor
VC	Vinyl chloride
VEGF	Vascular endothelial growth factor
WHO	World Health Organization

List of Tables

Table No.	Title Page No.
Table (1):	Geographic distribution of main risk factors for HCC worldwide
Table (2):	Child-Pugh score classification of severity of cirrhosis (clinical and laboratory based)
Table (3):	The "seven" hallmarks of cancer
Table (4):	Comparison between groups as regard sex , age and physical examination
Table (5):	Comparison between all groups as regard HCMV antibodies. 96
Table (6):	Comparison between all groups as regard liver function testes.
Table (7):	Comparison between all groups as regard hepatitis markers
Table (8):	Comparison between HCC and CLD groups as regard AFP
Table (8):	Correlation between AFP and HCMV100
Table (9):	Comparison between all groups as regard renal function tests
Table (10):	Comparison between all groups as regard CBC 102
Table (11):	Correlation between CMV IgM and the Other Studied Parameters in HCC and CLD group Using Pearson Correlation Coefficient Test
Table (12):	Correlation Study between CMV IgG and the Other Studied Parameters in HCC and CLD group Using Pearson Correlation Coefficient Test
Table (13):	Diagnostic Performance of CMV index in Discrimination control and HCC

List of Tables 📚

List of Tables (Cont...)

Table No.	Title			Page No.			
Table (14):	U	Performance ion control and					. 107
Table (15):	C	Performance ion HCC and C					. 109

List of Figures

Fig. No.	Title Page No.	
Fig. (1):	BCLC staging of HCC	39
Fig. (2):	Pathway linking chronic inflammation and oncogenesis?	76
Fig. (3):	Concept of Oncomodulation	78
Fig. (4):	Major signaling pathways activated by HCMV that contribute to oncomodulation by HCMV	80
Fig. (5):	Bar chart between groups as regard HCMV antibodies.	96
Fig. (6):	ROC- curve Performance of CMV index in Discrimination control and HCC	05
Fig. (7):	Inter active dot diagram of IgM in Discrimination control and HCC.	06
Fig. (8):	Inter active dot diagram of IgG index in Discrimination control and HCC	06
Fig. (9):	ROC- curve Performance of CMV index in Discrimination control and CLD	07
Fig. (10):	Inter active dot diagram of IgM in Discrimination control and HCC.	08
Fig. (11):	Inter active dot diagram of IgG in Discrimination control and HCC.	08
Fig. (12):	ROC- curve Performance of CMV index in Discrimination HCC and CLD	09
Fig. (13):	Inter active dot diagram of IgM in Discrimination CLD and HCC.	10
Fig. (14):	Inter active dot diagram of IgG in Discrimination	10

INTRODUCTION

The Human Cytomegalo Virus (HCMV) infection was demonstrated in 52.3% of chronic HBV, and 36% of chronic HCV patients (Bayram A et al., 2009).

HCV patients co-infected with HCMV infection can be regarded as high risk groups for liver disease progression where they should be monitored for the long term outcome of the disease (Tabll et al., 2011).

activity (necroinflammation Histologic scores fibrosis) of HCMV-positive patients were higher than that of HCMV-negatives in both HBV and HCV groups (Bayram A et al., 2009).

The Human Cytomegalo Virus (HCMV) seroprevalence was significantly higher in patients with HCC (74%) and lower in patients without Hepatpcellular Carcinoma (HCC) (Quentin Lepiller et al., 2011).

Preliminary histological studies from liver biopsies from HCC-positive patients highlighted that HCMV DNA can be

detected in tumour area of some of the patients studied (Quentin Lepiller et al., 2011).

Latent CMV and/or EBV infection may deteriorate the prognosis of HCV-infected patients. All HCV patients with cirrhosis or HCC expressed a latent CMV and EBV infection. (Gerakari et al., 2011).

AIM OF THE **W**ORK

To assess the prevalence of HCMV in patients with liver cirrhosis and hepatocellular carcinoma (HCC).