

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

2048,9

STUDIES ON THE SUITABILITY OF WATER RESOURCES IN SIWA OASIS, EGYPT FOR AGRICULTURAL USES

A THESIS

Presented to the Graduate School
Faculty of Agriculture
(Saba-Bacha)
Alexandria University

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF AGRICULTURAL SCIENCE

IN

(SOIL AND WATER)

BY

ABDELHAFID ABDELRAHMAN MOSSA

STUDIES ON THE SUITABILITY OF WATER RESOURCES IN SIWA OASIS, EGYPT FOR AGRICULTURAL USES

Presented by

ABDELHAFID ABDELRAHMAN MOSSA

For the degree of

MASTER OF AGRICULTURAL SCIENCES
(Soil & Water)

Examiner's Committee:

Prof. Dr. Maher G. Nasseem

Prof. and Head of Soil and Agric. Chemistry Dept., Fac. of Agric. Saba Bacha, Alex. Univ.

Prof. Dr. Hussein A. Zeid

Prof. of Soil and Water, Fac. of Agric. Saba Bacha, Alex. Univ.

Prof. Dr. Mohamed S. Shams

Prof. and Head of Soil and Water Dept., Faculty of Agric. Kafr El-Sheikh, Tanta University

Prof. Dr. Ahmed Y. Mourad

Prof. of Soil and Water and Vice Dean for community Development and Environment Affairs, Fac. of Agric., Damanhour Alex. Univ.

Approved

H. Zreel

A. Maurad

ADVISOR'S COMMITTEE

Prof. Dr. Maher G. Nasseem

Prof. and Head of Soil and Agric. Chemistry Dept., Faculty of Agriculture, Saba Basha, Alexandria University

Prof. Dr. Hussein A. Zeid

Prof. of Soil and Water Faculty of Agriculture, Saba-Bacha Alexandria University

Dr. Magda A. Hussein

Lecturer of Soil and Water Faculty of Agriculture, Saba-Bacha Alexandria University

To the spirit of my departed Mother, my dear father, my dear wife and my children. I dedicate this modest effort.

ACKNOWLEDGEMENT

Thanks are fully due to my God, most gracious, the most merciful, for beingable to complete this work.

I wish to express my profound gratitude and sincere appreciation to **Prof. Dr. Maher G. Nasseem**, Prof. and Head of Soil & Agric. Chemistry Dept., Fac. of Agric. Saba Bacha, Alexandria Univ., for suggesting this research problem, supervision, sympathetic encouragement and devoting much of his precious time in valuable discussions and reading throughout the entire work.

Also, I wish to express my gratitude and deep thanks to **Prof. Dr. Hussien A. Zeid,** Prof. of Soil and Water, Soil & Agric.

Chemistry Dept., Fac. of Agric. Saba Bacha, Alexandria Univ., for his supervision and help during the preparing of this thesis.

My gratitude extends to **Dr. Magda A. Hussien**, Lecturer of Soil and Water, Soil & Agric. Chemistry Dept., Fac. of Agric. Saba Bacha, Alexandria Univ., for her supervision, help, constructive discussions and devoting much effort during the preparing of this work.

It is a pleasure to express my gratitude to my dear parents, my dear wife, my sons, my Daughter, my brothers, my sisters and my friends to whom I owe so much.

My sincere thanks are due to the General Secretariat of Education and Scientific Research and Omar Al-Mukhtar University, Libya, for their support given to this study.

CONTENTS

	Page
ACKNOWLEDGEMENT	
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
II.1 Area studied	3
II.1.1. Location	3
II.1.2. Climate	3
II.1.3. Geology	6
II.1.4. Hydrogeology	7
II.1.5. Water resources	9
II.1.6. Soil	10
II.1.7. Cultivated area	12
II.2. Water quality problems	13
II.2.1. Salinity problem	14
II.2.2. Infiltration problem	21
II.2.3. Toxicity problem	24
II.2.4. Miscellaneous problem	33
II.3. Water quality evaluation	36
II.4. Water quality guidelines	41
III. MATERIALS AND METHODS	46
III.1. Samples location	46
III.2. Water sampling techniques	47
III.2.1. Measurements	51
III.3. Water quality evaluation	52
III.3.1. Water quality for irrigation	52
III.3.1.1. Wilcox method	52
III.3.1.2. U.S. Salinity laboratory method	53
III.3.1.3. Doneen's method	54
III.3.1.4. Gupta's method	56

	Page
III.3.1.5. FAO method	57
III.3.2. Water quality for livestock and poultry	59
IV. RESULTS AND DISCUSSION	60
IV.1. The water quality evaluation of Siwa Oasis	60
IV.1.1. Evaluation water quality for irrigation	60
IV.1.1.1. The water quality evaluation according to wilcox method	65
IV.1.1.2. The water quality evaluation according to U.S salinity	70
laboratory method IV.1.1.3. The water quality evaluation	70
according to Doneen method IV.1.1.3. The water quality evaluation IV.1.1.4. The water quality evaluation	75
according to Gupta method	80
IV.1.1.5. The water quality evaluation according to FAO method	85
IV.1.2. Evaluation water quality for livestock	0.0
and poultry	92
IV.1.2.1. The water quality evaluation according to total salt content	93
IV.1.2.2. The water quality evaluation according to magnesium ion	95
content	
according to toxic substances	95
IV.2. Management of water problems for irrigation	96
IV.2.1. Management of salinity problems	96
IV.2.2. Management of infiltration problems	103
IV.2.3. Management of toxicity problems	104
IV.2.4. Management of other problems	106
SUMMARY	108
LITERATURE CITED	115
ARABIC SUMMARY	

.

LIST OF TABLES

Table No.	<u>Title</u>	<u>Page</u>
. 1	The classification of saline waters for irrigation	
	according to U.S salinity laboratory and et al	19
2	Crop tolerance and yield potential of selected	
	crops as influenced by irrigation water salinity	
	(EC _W) or soil salinity (EC _e)	20
3	The approximate levels of chloride, sodium and	
	Boron to the three categories of plant tolerance	
	according to maas	25
4	Relative Boron Tolerance of agricultural crops	
	according to wilcox	31
5	Guidelines for interpretations of water quality	
	for irrigation	43
6	Laboratory determinations needed to evaluate	
	common irrigation water quality problems	44
7	Water quality guide for livestock and poultry	
	uses	45
8	U.S. Salinity laboratory staff classification for	
	irrigation water	54
9	Tentative standards for potential salinity of	
	irrigation water according to Doneen	55
10	Classification the suitability of water for	
	irrigation according to Gupta	57
11	Suggested limits for magnesium in drinking	
	water for livestock	59

Table No.	<u>Title</u>	<u>Page</u>
12	Chemical analysis of springs water samples	61
13	Chemical analysis of wells water samples	62
14	Chemical analysis of Drains water samples	63
15	Chemical analysis of lakes water samples	64
16	The values of EC _w and Na ion content of	
	springs water for Wilcox evaluation method	66
17	The values of EC _w and Na ion content of wells,	
	drains and lakes water for wilcox evaluation	
	method	68
18	The values of ECw and SAR values of springs	
	water for U.S. Salinity laboratory evaluation	
	method	71
19	The values of EC _w and SAR values of wells,	
	drains and lakes waters for U.S. salinity	
	laboratory evaluation method	73
20	Evaluation of springs waters according to	
	Doneen evaluation method	78
21	Evaluation of wells, drains and lakes waters	
	according to Doneen evaluation method	79
22	Values of adj. SAR, Boron concentration and	
	EC _w of springs water for Gupta evaluation	
	method	83
. 23	Values of adj. SAR, Boron concentration and	
	ECw of wells, drains and lakes water for Gupta	
	evaluation method	84

•