The Role of PET/CT Imaging in the Evaluation of Recurrent Ovarian Cancer

THESIS

Submitted For Partial Fulfillment Of MD Degree In Radiodiagnosis

Submitted by

Elham Ahmed Mabrouk Hassan

M.B.B; CH, M.Sc

Ain Shams University

Supervised by

Prof. Dr. Ola Mohamed Gamal El-Deen Nouh

Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Prof. Dr. Marwa Ibrahim M.Fahmy

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Prof. Dr. Ahmed Mostafa Mohamed

Professor Of radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2015

Acknowledgment

First of all, my prayerful gratitude should be submitted to **Allah**, the most gracious, most merciful whose help I always seek, while I try humbly to lead on his path, and without his willing I will achieve nothing.

I would like to express my deepest gratitude and thanks to **Prof. Dr. Loai Ezzat** who had the privilege and vision of early implementation of 1st PET/CT (after the limited experience of PET imaging by the Military IC) and since then this technology is getting more and more expanding.

I wish to express my deepest gratitude and profound respect to my honored Prof. Dr. Ola Mohamed Gamal El-Deen Nouh Maher Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his meticulous supervision, his constant encouragement and constrictive guidance were of great importance for the initiation, progress and completion of this work. I am deeply affected her noble, character, perfection, care and consideration. I am very much privileged and honored to have her as my supervisor. To her I owe much more than I can express.

I wish also to express my my deepest gratitude, profound respect cordial thanks and appreciation to **Prof. Dr. Marwa Ibrahim M. Fahmy,** Professor of Radiology, Faculty of Medicine, Ain Shams University for his remarkable effort, kind help and great support throught this work.

I wish also to express my my deepest gratitude, profound respect cordial thanks and appreciation to **Prof. Dr. Ahmed Mostafa Mohamed**, Professor of Radiology, Faculty of Medicine, Ain Shams University for his remarkable effort, kind help and great support throught this work.

Last but not least, I would like to express my sincere gratitude and endless love to may family and my leaders especially may father for his support, patience, encouragement and cooperation in accomplishing this work.

Elham Ahmed

Contents

List of Figers	I-V
List of Tables	VI
List of Abbreviations	VII-VIII
Introduction	1-3
Aim of the Work	4
Chapter 1: Gross anatomy of the ovaries	5-11
Chapter 2: Pathology of ovarian cancer	12-22
Chapter 3: physical Principles of PET/CT	23-34
Chapter 4: Technique of PET/CT examination	35-54
Chapter 5: Imaging of recurrent ovarian cancer by PET/CT	55-90
Chapter 6: Patients and methods	91-97
Chapter 7: Results	98-112
Chapter 8: Illustrated cases	113-136
Chapter 9: Discussion	137-160
Chapter 10: Summary and conclusion	161-165
Chapter 11: References	166-184
Chapter 12: Arabic Summary	185-187

List of Figers

Figures	Page
Fig.1: Median sagittal section and Graphic of the uterus, ovary and their venous system	5
Fig.2: Microstructure of the ovary and follicles at various stages	6
Fig.3: Postero-superior aspect of the uterus and the right broad ligament	7
Fig.4: Showing normal anatomy of the arterial blood supply of the left ovary	8
Fig.5: Transverse PET/CT images showing physiologic PET activity in both ovaries	10
Fig 6: Axial T1-WI (a) and coronal T2-WI (b). Both ovaries display multiple small follicles	11
Fig.7: Schematic drawing showing sites of origin of ovarian cancer	14
Fig 8: Annihilation reaction.	24
Fig 9: PET/CT data processing, indicating impact of CT image on PET data	25
Fig 10: Glucose and fluorodeoxyglucose structure.	27
Fig 11: A schematic illustration of a PET/CT system	36
Fig 12: Typical imaging protocol for combined PET/CT	43
Fig 13: Physiologic laryngeal uptake	46
Fig 14: Physiologic diaphragmatic uptake.	47
Fig 15: Physiologic gastric uptake	48

Fig.(16): Physiologic muscle activity.	49
Fig.(17): artifacts of PET/CT of ingested barium befor and after correction	51
Fig.(18): artifacts of PET/CT because of respiratory motion.	52
Fig.(19): artifacts of PET/CT because of injected contrast.	53
Fig.(20): TVUS image of suspicious adnexal mass	56
Fig.(21): Adnexal mass on MRI with malignant characteristics	58
Fig.(22): Physiological FDG uptake by corpus luteum	59
Fig. (23): A patient with a doubtful mass in the right ovary	60
Fig. (24): A patient with right ovarian mass. Histology demonstrated the presence of a cystoadenoma	61
Fig.(25): A woman had an endometrioid adenocarcinoma arising from ovarian endometrioma	62
Fig.(26): Pathway of imaging and intervention for suspected OC.	63
Fig. (27): Diagram illustrating OC stages	65
Fig. (28): CT images for liver disease.	69
Fig. (29): Peritoneal metastases with involvement of the falciform ligament and porta-hepatis	69
Fig. (30): A 60-year-old patient with left ovarian malignant lesion shown to be serous papillary adenocarcinoma at histology	70
Fig. (31): CT and PET/CT images for a 50-year-old woman of stage IIIC with pelvic LN metastases	71
Fig. (32): CT and PET/CT images for a 57-year-old woman of stage IIIB with peritoneal dissemination.	71

Fig. (33): CT-guided core biopsy of the omentum in a patient with suspected ovarian cancer.	73
Fig. (34): CT and PET/CT images for a patient representing with increase in serum CA 125 showing peritoneal nodules.	77
Fig. (35): A woman with recurrent lesions consisting of tiny peritoneal dissemination and tiny LN metastasis	78
Fig. (36): patient with recurrent ovarian cancer and increasing level of CA-125. PET/CT demonstrated focal hypermetabolic at the mesenteric serosal surface of the ascendant colon	79
Fig. (37): MRI for local tumor spread with rectal invasion of a right ovarian cancer	80
Fig. (38): Extensive peritoneal disease in the upper abdomen with surface metastases of the diaphragm, liver and spleen	82
Fig. (39). Ce-CT images for peritoneal metastases in a 55-year-old female with ascites and markedly elevated Ca-125 levels	83
Fig. (40): Gadolinium-enhanced MR image of a woman with treated stage III ovarian cancer image through upper abdomen shows enhancing perisplenic and perihepatic peritoneal tumor	83
Fig. (41): Limitation of CT in detecting small peritoneal implants	84
Fig. (42): Fine peritoneal disease and ascites. Axial Ce-CT image showing diffuse peritoneal enhancement	84
Fig. (43): CT images for the spectrum of liver metastases in ovarian cancer	86
Fig. (44): Representative PET/CT images of 4 distinct patterns of peritoneal carcinomatosis.	87
Fig. (45): Woman with recurrent undifferentiated	88

adenocarcinoma of the right ovary. PET/CT revealed single nodular hypermetabolic lesion in the pelvic cavity, suggestive of seeding nodule. Ce-CT reported a negative finding	
Fig. (46): False-negative PET results in a woman with miliary peritoneal carcinomatosis, elevated CA-125 levels, and a history of (TAH), (BSO), omentectomy, lymph node dissection, and chemotherapy for stage IIIC ovarian mucinous cystadenocarcinoma.	88
Fig. (47): Metastasis to the umbilicus in a 56-year-old woman with stage IIIC serous papillary adenocarcinoma	89
Fig. (48): CT and PET/CT images showing calcified lymph nodes in supraclavicular, left parasternal and third in right external iliac areas.	90
Fig. (49): CT and PET/CT images for small FDG-avid paraaortic metastatic lymph nodes	90
Fig. (50): A woman with ovarian cancer. Transaxial PET, CT and fused PET/CT images show peritoneal, liver and vertebral metastases.	91
Fig. (51): Distribution of the pathological groups among 30 cases	99
Fig. (52): The initial treatment modalities among 30 cases.	100
Fig (53): ROC-Analyses of the difference in sensitivity, specificity and accuracy between histopathology results, tumor marker & PET/CT on study-basis	103
Fig. (54): Distribution of disease among 65 positive sites*.	105
Fig. (55): Peritoneal pattern in PET/CT among 65 positive sites*.	108
Fig. 56: Sites of peritoneal metastases in positive PET/CT studies.	109
Fig. 57: Distribution of pelvic LNs metastases in positive PET/CT studies.	110

Fig. 58: Proposed algorithm for evaluation of newly found solitary pulmonary nodules	164
Fig. 59: Case 1	114
Fig. 60: Case 2	116
Fig. 61: Case 3	118
Fig. 62: Case 3	120
Fig. 63: Case 4	122
Fig. 64: Case 5	124
Fig. 65: Case 6	126
Fig. 66: Case 6	128
Fig. 67: Case 7	130
Fig. 68: Case 8	132
Fig. 69: Case 9	134
Fig. 70: Case 10	136
Chart 1: FIGO classification of 30 patients with ovarian cancer	112

LIST OF TABLES

TABLE	Page
Table 1: Epithelial tumors of all ovarian tumors	16
Table 2: Sex cord stromal tumors of all ovarian malignancies	17
Table 3: Germ cell tumors of all ovarian malignancies	18
Table 4: OEC Histologic Subtypes and Their Characteristics	20
Table 5: TNM and FIGO Classifications for Ovarian Cancer	21
Table 6: pTNM pathologic classification,	22
Table 7: The imaging properties of various PET crystals	30
Table 8: FDG Radiation Dosimetry for adults and children	38
Table 9: Factors affecting the SUV.	45
Table 10: Evaluation of adnexal masses and (RMI).	57
Table 11: MRI-features suggestive of benignity and malignancy	58
Table 12: Imaging criteria for non-resectable disease in ovarian cancer.	68
Table 13 : General characteristics of the patients enrolled in the work	98
Table 14: characteristics of patients in group 1.	99
Table 15: Study-based analyses of the diagnostic performances of PET/CT in 30 Studies.	101
Table 16 : Classification of post-treatment tumor surveillance PET/CT studies according to the results of tumor markers.	102
Table 17: Study-based analyses of the diagnostic performances of tumor marker in 30 Studies	102
Table 18: Distribution of disease according to final follow up.	104
Table 19: Lesion-based analyses (64 lesions) of the diagnostic performances of PET/CT in 30 Studies to second treatment	105
Table 20 : Accuracy measures of PET/CT in revealing recurrent ovarian tumor.	107
Table 21: Patient distribution according to FIGO staging.	112

List of Abbreviations

PET: Positron emission tomography.

18F-FDG: 18 flurodeoxyglucose

68Ge: Germanium-68

ACFs: Attenuation Correlation Factors.

ADC: Apparent diffusion coefficient.

AFP: Alfa Fetoprotien.

BGO: Bisthmuth germinate.

BOTs: Borderline ovarian tumors.

BSO: Bilateral salpingo-oopherectomy.

CA 153: cancer antigen 153.

CA 19-9: Cancer antigen 19-9

CA-125: Cancer antigen 125

CCCs: Clear cell carcinomas.

CEA: Carcino-embryonic antigen

Ce-CT: Contrast enhanced computed tomography.

CT: Computed tomography.

FDG: Fluoro-2-deoxy-d-glucose.

FIGO: Féderation Internationale de Gynécologie et d'Obstétrique

FN: False negative

FP: False positive

TN: True negative

TP: True positive

DWI: Diffusion weighted imaging.

GSO: Gadolinium oxyorthosilcate.

HCG: Human chorionic gonadotropin.

HGSCs: High grade serous carcinomas.

HRT: Hormone replacement therapy.

HU: Hounsfield units.

IGCB: Image-guided core biopsy.

ld-CT: Low Dose computed tomography.

LGSCs: Low grade serous carcinomas.

LSO: Lutetium oxyorthosilicate.

MDCT: Multi-detector computed tomography.

MIP: maximum intensity projection.

MMMT: Malignant Mixed M llerian Tumors

MOGCTs: Malignant Ovarian Germ Cell Tumors.

MRI: Magnetic resonance imaging.

NNCN: National Cancer comprehensive network

NPV: Negative predictive value.

OC: Ovarian cancer.

OEC: Ovarian epithelial carcinoma.

PPV: Positive predictive value.

RMI: Risk of malignancy index.

SCSTs: Sex Cord Stromal Tumors

SLL: Second-look laparotomy

SUV: Standard uptake value.

T.M: Tumor marker

TAH: Total abdominal hysterectomy.

TVUS: Trans-vaginal ultrasound.

US: ultrasound.

WHO: World Health Organization

Introduction

Cancer is a major cause of death in the developed world, and is becoming a significant issue for developing countries (*Jones et al.*, 2006).

Ovarian cancer is the 2nd most common gynecologic malignancy (after cervical cancer) with life time risk 1.7%. Although its incidence has decreased slightly over the past 30 years, it currently is the most common cause of death among women with gynecologic malignancy (*Hongju et al.*, 2011).

The majority of ovarian cancers (up to 90%) arise from the surface epithelium of the ovary. Of the epithelial tumors, the most common type is serous adenocarcinoma. The remaining 10% of all ovarian cancers are germ cell tumors (such as teratomas, dysgerminomas and yolk sac tumors), sex cord stromal tumors (*Schwarz et al. 2009*).

Ovarian cancer spreads early by implantation on both the parietal and the visceral peritoneum before spreading through the lymphatics and involving the inguinal, pelvic, para-aortic, and mediastinal lymph nodes. The serum tumor marker CA-125 is elevated in nearly 80% of patients with advanced ovarian cancer. This tumor marker is widely used to assess the effectiveness of therapy and to detect tumor recurrence.

Abnormal marker levels often precede clinical and radiologic signs of disease recurrence (*Schwarz et al. 2011*).

Serum CA-125 assay, physical examination, and anatomic imaging have been widely used to evaluate patients with ovarian cancer. Cytoreductive surgery followed by chemotherapy is the mainstay of primary treatment for high grade early and advanced stage disease (*Hongju et al.*, 2011).

Despite high clinical response rates after optimal debulking surgery and combination chemotherapy, 50- 75 % of patient still experience disease relapse (*Armstrong et al.*, 2006). However, due to the recent emergence of alternative targeted therapies, which are designed to manage small-volume recurrent disease, positron emission tomography (PET) combined with computed tomography (CT) may play an important role in detection of recurrent ovarian cancer (*Hongju et al.*, 2011).

PET/CT is used for early detection of patients with suspected recurrent ovarian cancer, rising CA-125 levels, and negative CT or MRI imaging results. In addition, PET/CT is also able to detect disease recurrence in the absence of elevated CA-125 levels. However, it remains the anatomic information provided by CT significantly improve the overall diagnostic accuracy of PET (*Gu et al.*, 2009).

PET/CT can differentiate between nodal metastasis & inflammatory adenopathy and fibrotic changes on the basis of significantly increased metabolic activity, even in normal sized nodes. However, PET/CT is limited with high false negative rates in detection of small or necrotic lymph nodes (*Choi et al.*, 2006).

In this work, the characters and the patterns of spread of recurrent ovarian cancer, the strength and limitations of PET/CT for detection of disease relapse will be discussed.