

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

RECENT ADVANCES IN RIGID GAS PERMEABLE CONTACT LENSES

Essay Submitted for Partial Fulfillment of the Master Degree in Ophthalmology

By Inas Hassan Hashem

M.B., B.Ch.
Ain Shams University

Supervised by Prof. Dr. Fatma M. S. El Hennawy

Professor of Ophthalmology
Faculty of Medicine - Ain Shams University

Dr. Mamdouh H. El Kafrawy

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
Cairo
2000

ن من الله الله ye,

بسم الله الرحمن الرحيم

قالوا سبحانكلا علم لنا إلا ما علمتنا، إنكأنت العليم الحكيم

صدق الله العظيم

سورة البقرة-الآية:٣٢

Acknowledgment

I would like to express my respect and gratitude to Prof. Dr. Fatma M. S. El Hennawy, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for her continuous support and meticulous supervision, without her great help and advices, this work could not be completed.

Also I present my thanks and appreciations to Dr. Mamdouh H. El Kafrawy, Assistant Professor of Ophthalmology, Faculty of Medicine - Ain Shams University, for his fruitful advices, continuous encouragement and worthy remarks.

Last but not least, I would like to present my sincere thanks to all staff members of the Ophthalmology Department, Faculty of Medicine, Ain Shams University, for their help and encouragement during this work.

7.47.75

....

7(31

List of Contents

	Page
Introduction	1
Aim of the Work	6
RGP Materials	7
Parameters and Design	16
Corneal Topography	28
Indications of RGP Contact Lenses	43
Relative Contraindications for RGP Contact Lenses	57
Fitting of Rigid Gas Permeable (RGP) Contact Lenses	59
Current RGP Contact Lens Care Systems	95
Complications	103
Summary	126
References	128
Arabic Summary	

985.2

42

. (

List of Figures

	Page
Fig. (1): The contact angle.	11
Fig. (2): Tricurve lens showing intermediate and peripheral radii.	18
Fig. (3a): A spheric design.	22
Fig. (3b): Posterior surface of a spherical lens has a series of	23
secondary curves that must be blended at each junction and flatten	
toward the lens periphery (top). The posterior surface of the	
aspheric Boston Envision lens flattens without any junctions that	
interfere with comfort or disturb corneal integrity (bottom).	
Fig. (4): A high plus lenticular lens (Right) contrasted with a	26
standard single cut plus lens (Left).	
Fig. (5): Top: Photokeratoscope Bottom: appearance of normal	29
placido image.	
Fig. (6): Keratoscopy showing colour coded topographical map of	31
normal cornea.	
Fig. (7): Normal topographic patterns.	33
Fig. (8): Astigmatism is seen on keratoscopy as a distortion of the	34
circular projections into concentric oval reflections.	
Fig. (9): The line of sight is the straight line from the fixation point	36
to the center of the entrance pupil (E). Current videokeratoscopes	
align on a reflected corneal image of a target that is symmetric with	
the videokeratoscope optic axis, which is detected toward the	
center of curvature (C) for the corneal position measured.	
Videokeratoscopy axis deviates from where the line of sight	
crosses the cornea.	
Fig. (10): Computerized stimulated flourescein pattern showing an	40
aligned spherical corneal lens.	
Fig. (11): Computerized stimulated flourescein pattern showing a	41
steep fit spherical lens.	
Fig. (12): A computerized stimulated flourescein pattern showing a	42
flat fit spherical lens.	

Fig. (13a): Corneal topography demonstrates the steep irregular	47
astigmatism of the cone with its peak in the inferior cornea below fixation.	
Fig. (13b): The cone is completely eccentric and acuity is reduced	48
to 20/200.	10
Fig. (14): Corneal mapping in central keratoconus showing	49
irregularity.	
Fig. (15): Relative size and shape of three cone forms in	51
keratoconus (A) nipple shaped cone, (B) an oval cone, (C) globus	
cone	
Fig. (16): Lenticulation.	66
Fig. (17): Top Rt: Lid attachment fit with the lens resting in	69
superior position. Bottom Rt: Interpalpebral fit with centralizing	
lens. Top Lt: Inferior lens position. Bottom Lt: Temporal ride of	
aphakic lens.	72
Fig. (18): In this photograph, a dark area can be seen centrally,	73
surrounded by bright green. The dark zone indicated that there is moderate apical bearing caused by a fitting relationship that is too	
flat.	
Fig. (19): This photograph shows an evenly aligned edge-to-edge	74
flourescein pattern with slight bearing in the mid-periphery of about	A 5.40
45° on each side in the horizontal meridian. Mid-peripheral bearing	
must be kept to less than 180° to prevent seal-off and ensure an	
adequate tear exchange. This lens meets the criteria for an ideal fit	
Fig. (20): The slight pooling of flourescein centrally indicates	75
apical clearance.	
Fig. (21): In this lens-cornea relationship, severe apical clearance	76
can be seen, as evidenced by substantial central pooling of	
flourescein and 360° of heavy mid-peripheral bearing.	Voca con
Fig. (22): A dark zone can be seen centrally with a moderately	77
large area of central touch, causing severe apical bearing. The fit is	
so flat that it causes inferior standoff with pooling of flourescein.	