

شبكة المعلومــات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B.0509

Baseline-nitrate-trimetazidine-Tc-99m sestamibi versus T1-201 rest-reinjection SPECT for the assessment of myocardial viability

M

Thesis

Submitted for partial fulfillment of the MD degree in cardiology

By

Hanan Hafez Hafez Zeidan (M.B.B.CH., M.S. Cardiology)

Under the supervision of:

Prof. Wagdy Abd El-Hamid Galal (Professor of cardiology, Ain Shams University)

prof. Ihab Mohamed Attia (Professor of cardiology, Ain Shams University)

Dr. Ahmed Abd El-Rahman Sharaf El-Din (Lecture of cardiology-Ain Shams University)

Dr. Salah Hamdy Demerdash (Lecture of cardiology-Ain Shams University)

dálian Batez Halez Aldano

I DA

113

1 L

A CONTROL OF THE PROPERTY OF T

nareni... The second of the second of the second of ية عشق ŧ

Acknowledgment

I wish to express my deepest gratitude to professor Wagdy Abd El-Hamid Galal, Professor of cardiology Ain Shams University, for his encouragement, support, and kindness which enabled me to go ahead and complete this work.

I am also indebted to professor Thab Mohamed Attia, Professor of cardiology, Ain Shams University, for his kind, continuous assistance and his precious remarks.

9 am also grateful to Dr. Ahmed Abd El-Rahman for his keen supervision and kind guidance.

I would like to express my unlimited gratitude to Dr. Salah Hamdy Demerdash for his continues support and help all through this study and for his precious advice that helped me to finish this work.

A very special thanks goes to Dr. Yassier Gomaa for his support and help.

Many thanks go to Mr. Khalid El-Banna for his help as a member of the group of nuclear cardiology laboratory.

Lastly 9 am grateful and indebted to my brother Mohamed and my family for their support as without their help this work would not be completed.

List of abbreviations

ATP	Adenosine triphosphate
CAD	Coronary artery disease
DM	Diabetes mellitus
ECG	Electrocardiography
EF	Ejection fraction
FDG	Flurodeoxy- glucose
kev	Kilo electron volt
LV	Left ventricle
MCE	Myocardial contrast echocardiography
MR	Magnetic resonance
NYHA	New York Heart Association functional
j januar.	classification.
PET =	Positron emission tomography
PTCA	Percutaneous transluminal coronary
],	angioplasty
SPECT	Single photon emission computed
•	tomography
Tc 99m	Technetium 99m
TI ²⁰¹	Thallium 201
TMZ 4	Trimetazidine

Contents

Contents		
Introduction] 1	
Aim of the study] 2	
Review of literature	_]	
Myocardial viability] 3	
Assessment of myocardial viability	13	
Assessment of myocardial viability by PET	15	
Assessment of myocardial viability by ECHO	21	
Assessment of myocardial viability by SPECT	31	
Assessment of myocardial viability by MRI	51	
Effect of trimetazidine on cell metabolism	55	
Patient and methods		
Results	66	
Discussion	100	
Conclusion and recommendations	108	
Summary		
References		
Arabic summary		

List of tables

No.	Name	Page no.
1	Current approaches for identifying viability in patients with ischemic heart disease and left ventricular dysfunction.	13
2	Results of different studies in PET and FDG to predict functional recovery after revascularization.	17
3	Sensitivity, specificity, and accuracy of dobutamine echocardiography for prediction of reversible dysfunction after revascularization.	27
4	Positive, negative predictive value and accuracy of thallium SPECT of different studies.	40
5	Clinical characteristics of the studied patients.	67
6	Echocardiographic findings of the studied patients.	68
7	Correlation between thallium 201 rest and baseline technetium 99-m among all segments.	71

Ì	Baseline nitrate TC 99m sestamibi of	
8	the same patient showing no viability in	94
	the affected segments.	
9	Baseline TMZ TC 99m sestamibi of the	
	same patient showing no viability in the	95
	affected segments.	
10	Baseline TMZ TC 99m sestamibi of the	!
	a patient showing no viability in the	06
	affected segments, an apical aneurysm	96
	is seen in this study.	
ł	Thallium 201 rest delayed redistribution	
11	SPECT showing viability in basal	97
	anteroseptal segment.	
12	Baseline nitrate TC 99m sestamibi of	•
	the same patient showing viability in	98
	basal anteroseptal segment.	
13	- Baseline TMZ TC 99m sestamibi of	<u>.</u>
	the same patient showing viability in	99
	basal anterior and basal antroseptal	. 77
	segments.	-

.

List of figures

No.	Title	Page no.
1	Thallium 201 rest delayed redistribution SPECT showing viability in basal septum, and basal inferior segments.	87
2	Baseline nitrate TC 99m sestamibi of the same patient showing viability in infroseptal, and inferior segments.	. 88
3	Baseline TMZ TC 99m sestamibi of the same patient showing viability in infroseptal, and inferior segments.	89
4	Thallium 201 rest delayed redistribution SPECT showing viability in basal anterior septum, and inferior segments.	90
5	Baseline nitrate TC 99m sestamibi of the same patient showing viability in basal - anterior, septum and inferior -	91
6	Baseline TMZ TC 99m sestamibi of a patient showing viability in anterior and antrolateral segments.	92
7	Thallium 201 rest delayed redistribution SPECT showing no viability in the affected segments.	93