Trial of New Antiviral Drugs in Patients With Decompensated Liver Cirrhosis Due to HCV Infection

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

Submitted by

Christina Alphonse Anwar
M.B.B.CH
Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Mohsen Mostafa Maher

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Prof. Dr. Esam Mohamed Baiomy

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Moataz Mohamed Elsayed

Lecturer of Internal Medicine Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2011

تجربة مضادات الفيروسات علي مرضى تليف الكبد الذين يعانون من فشل بوظائف الكبد نتيجة للاصابة المزمنة بالفيروس الكبدى سى

رسالة توطئة لاستكمال درجة ماجستير الباطنة العامة

مقدمة من

الطبيبة / كريستينا الفونس انور بكالوريوس الطب والجراحة

تحت إشراف

الأستاذ الدكتور/ محسن مصطفى ماهر

أستاذ أمراض الباطنة

كلية الطب جامعة عين شمس

الأستاذ الدكتور/ عصام محمد بيومي

أستاذ أمراض الباطنة

كلية الطب جامعة عين شمس

الدكتور/ معتنز محمد السيد

مدرس أمراض الباطنة

كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس

Summary

Egypt has the largest burden of Hepatitis C virus in the world, the overall prevalence for positive HCV Ab in Egypt was 14.7%. 9.8% of the population continues to have HCV RNA, which means that 7.8 millions of the Egyptians continue to have chronic active hepatitis (According to Egyptian demographic health survey) (*Kamel et al.*, 1992).

Cirrhosis represents the end stage of any chronic liver disease, it can remain compensated for many years prior to development of decompensating events; decompensated cirrhosis is marked by the development of jaundice, variceal hemorrhage, ascites or encephalopathy (Sakib and Garcia-Tsao., 2003).

According to the NIH Consensus Conference Statement, the primary therapy recommended for patients with decompensated liver disease due to HCV infection is referral for liver transplantation (National Institute Of health consensus development conference statement, 2002).

Interferon and ribavirin therapy (the standard antiviral therapy for HCV infection) is potentially dangerous in the setting of decompensated cirrhosis because of the increased risk of life threatening complications and because of the concern that it might accelerate hepatic decompensation (*Crippen et al.*, 2002).

Contents

Subjects	Page
• List of Abbreviations	I
• List of Tables	VI
• List of Figures	VIII
List of Diagrams and Graphs	X
• Introduction	1
Aim of the Work	3
• Review	
- Chapter (1): HCV Structure	4
- Chapter (2): Life cycle of HCV	7
- Chapter (3): Viral Heterogenicity and Distribution	ı20
- Chapter (4): Transmission	27
- Chapter (5): Natural History	33
- Chapter (6): Drugs used in treatment of HCV	94
Materials and Methods	125
• Results	131
• Discussion	147
• Summary	157
• Conclusion	161
Recommendations	162
• References	163
Arabic Summary	

List of Abbreviations

aa Amino Acid

AASLD American Association For The Study Of Liver

Disease

AFP Alpha Fetoprotein

AFP-L3 Lens Culinaris Agglutinin-Reactive AFP

Ag Antigen

AIDS Acquired Immune Deficiency Syndrom

AKI Acute Kidney Injury

AP Alkaline Phosphatatase

ALT Alanine Aminotransferase

AST Aspartate Aminotransferases

AT Antithrombin

BMI Body Mass Index

CD4 Cluster Of Differentiation 4

CD 81 Cluster Of Differentiation 81 (Target Of Anti

Proliferation Antibody)

CHC Chronic Hepatitis C

Cr Cl/min Createnine Clearance Per Minute

CTP Child –Turcotte -Pough

CT Computed Tomography

DAA Direct-Acting Antiviral Agent

D. Bil Direct Bilirubin

DC-SIGN Dendritic Cell-Specific Intercellular Adhesion

Molecule-3-Grabbing Nonintegrin

DCP Desgamma Carboxy Prothrombin

DNA De-Oxy Ribonucleic Acid

DVR Delayed Virological Response

E1 Envelope Protein 1

E2 Envelope Protein 2

ECM Extra Cellular Matrix

EDHS Egyptian Demographic Health Survey

EIF Eukaryotic Translation Initiation Factor

EIA Enzyme Linked Immunosorbent Essay

ER Endoplasmic Reticulum

EVR Early Virologic Response

FDA Food And Drug Administration

G-CSF Granulocyte Colony Stimulating Factor

GGT Gamma Gluteryl Transferase

GH Growth Hormone

GM-CSF Granulocyte Macrophage Colony-Stimulating

Factor

Gpc 3 Glypican 3

GTP Guanosin Triphosphate

HBeAg Hepatitis B E Antigen

HBsAg Hepatitis B Surface Antigen

HBV Hepatitis B Virus

HCV Hepatitis C Virus

RNA Riboneucleic Acid Of Hepatitis C Virus

HCC Hepatocellular Carcinoma

HIV Human Immune Deficiency Virus

HDL High Density Lipo Protien

Hgb Hemoglobin

HLA Human Leucocyte Antigen

HPS Hepato-Pulmonary Syndrom

HRS Hepato-Renal Syndrom

HVAP-A Human Vesicle Associated Membrane Protein A

HVR1 Hyper Variable Region 1

INF Interferon

IFN α Interferon A

IGF-1 Insulin Growth Factor-1

IgM Immunoglobulin M

IL 28B Interleukin 28b

INR International Normalization Ratio

IRES Internal Ribosomal Entry Site.

ISGs Interferon Stimulated Genes

ITP Immune Thrombocytopenic Purpura

IU International Unit

KD Kilo Dalton

LDL Low Density Lipoproteins

LOLA L-Ornithin, L-Aspartate

MELD Model For End-Stage Liver Disease

MHC Major Histocompatibility Complex

MRCP Magnetic Resonance Cholangiopancreatography.

MRI Magnetic Resonance Imaging

m RNA Messenger Ribonucleic Acid

NH₄ Ammonia

NI Nucleoside Analogue Inhibitor

NNI Non Nucleoside Inhibitor

NS Non Structural

PCR Polymerase Chain Reaction

PEG-IFN Pegylated Interferon

PFOR Pyruvate Ferrodoxin Oxireductase

PHTN Portal Hypertension

PKR Protein Kinase R

PLT Platelets

Pphtn Porto- Pulmonary Hypertension

PT Prothrombin Time

PVT Portal Vein Thrombosis

RVR Rapid Virologic Response

SBP Spontaneous Bacterial Peritonitis

SVR Sustained Virologic Response

SR-BI Scavenger Receptor Class B Type I

RBC Red Blood Cell

RBV Ribavirin

RDRP RNA Dependent RNA Polymerase

RNA Ribonucleic Acid

SOC Standerd Of Care

STAT-C Specially Targeted Antiviral Therapy For HCV

TE Transient Elastography

TIPS Transjugular Porto Systemic Shunt

TRIF Toll-Like Receptor Signaling In The Liver

TSH Thyroid Stimulating Hormone

T.bil Total Bilirubin

Te Transient Elastography

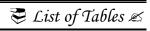
TGF Tumor Growth Factor.

TMA Transcription Mediated Amplification

U/S Ultra Sound

USA United States Of America

UTR Untranslated Regions


VAMP Vesicle Associated Membrane Protein

WBC White Blood Cells

WHO World Health Organization

List of Tables

Table No.	Title	Page
Table (1)	Child pugh classification.	91
Table (2)	Comparison of laboratory findings (liver function tests and alpa fetoprotein) in the 3 groups before starting treatment using ANOVA test.	133
Table (3)	Comparison of blood picture and coagulation profile in the 3 groups before starting treatment using ANOVA test	134
Table (4)	Comparison of viral load in the 3 groups before starting treatment using Chi Square test.	135
Table (5)	Comparison of the incidence of ascites in the 3 groups before starting treatment using Chi Square test.	136
Table (6)	Comparison between the three groups regarding encephalopathy before starting treatment using Chi Square test.	136
Table (7)	Comparison between the three groups regarding portal hypertension seen by U/S before starting treatment using Chi Square test.	137
Table (8)	Comparison of liver function tests and viral load before and after treatment in Sylimarin group using Paired t test.	139

Table No.	Title	Page
Table (9)	Comparison of liver function tests and viral load before and after treatment with	141
	ribavirin plus sylimarin group using paired t test.	
Table (10)	Comparison between liver function tests and viral load before and after treatment with nitazoxanide plus sylimarin group using paired t test.	143
Table (11)	Incidence of most common side effects of the 3 groups in percentage.	146

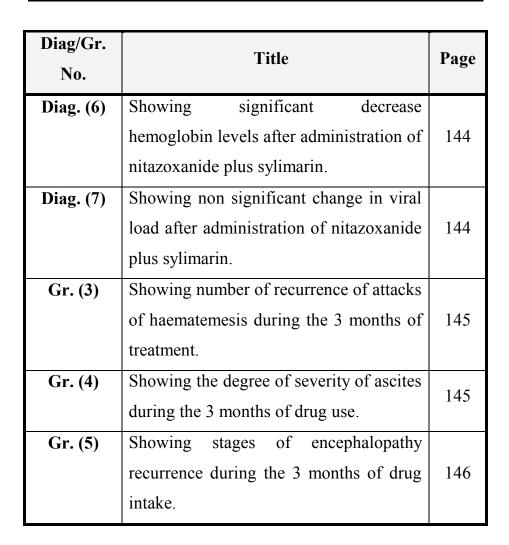

List of figures

Fig. No.	Title	Page
Fig. (1)	HCV structure.	4
Fig. (2)	Genome organization of HCV.	6
Fig. (3)	HCV receptors.	8
Fig. (4)	Internal ribosomal entry site.	12
Fig. (5)	RNA dependent RNA polymerase.	16
Fig. (6)	HCV life cycle.	19
Fig. (7)	HCV world wide distribution.	23
Fig. (8)	Global HCV prevalence.	24
Fig. (9)	Transmission of HCV.	30
Fig. (10)	HCV in Egypt.	32
Fig. (11)	Natural history of HCV.	33
Fig. (12)	Chronic HCV.	48
Fig. (13)	PCR.	52
Fig. (14)	Guide lines of chronic HCV treatment.	70
Fig. (15)	Liver cirrhosis as seen on an axial CT	74
	abdomen Portal.	/4
Fig. (16)	Portal vein and associated anatomy.	77
Fig. (17)	Liver cirrhosis manifestations.	86
Fig. (18)	CT slide of HCC.	89
Fig. (19)	Silymarin structure.	99

Fig. No.	Title	Page
Fig. (20)	Ribavirin structure.	101
Fig. (21)	Nitazoxanide structure.	106
Fig. (22)	HCV NS5B RNA polymerase structure and DAA binding sites.	119

List of Diagrams and Graphs

Diag/Gr. No.	Title	Page
Diag. (1)	Patient disposition flowchart.	132
Gr. (1)	Showing non significant difference between incidence of haematemesis before starting medication.	138
Gr. (2)	Showing non significant difference in the degree of varices by upper GIT endoscopy between the 3 groups before starting medication.	138
Diag. (2)	Showing significant decrease in hemoglobin level after administration of sylimarin.	140
Diag. (3)	Showing non significant change in viral load after administration of sylimarin.	140
Diag. (4)	Showing highly significant decrease in hemoglobin level after administration of Ribavirin plus sylimarin.	142
Diag. (5)	Showing non significant change in viral load after administration of ribavirin plus sylimarin.	142

