

Possible transmission of avian influenza A virus (H5N1) via some aquatic animals

A Thesis Submitted for the Degree of Doctor of Philosophy in Science (Microbiology)

By Neveen Magdy Rizk Mohamed M. Sc. of Microbiology 2009

Under the Supervision of

Prof. Dr. Ahmed Barakat Barakat

Professor of Virology
Microbiology Department
Faculty of Science
Ain Shams University

Prof. Dr. Mohamed Ahmed Ali

Professor of Virology Water Pollution Department National Research Centre

Prof. Dr. Sahar Ahmed Hafez Showman

Professor of Virology
Microbiology Department
Faculty of Science
Ain Shams University

Prof. Dr. Fagr Khamis Abdel Gawad

Professor of Genetics Water Pollution Department National Research Centre

Department of Microbiology Faculty of Science Ain Shams University 2016

Possible transmission of avian influenza A virus (H5N1) via some aquatic animals

A Thesis Submitted for the Degree of Doctor of Philosophy in Science (Microbiology)

> By Neveen Magdy Rizk Mohamed M. Sc. of Microbiology 2009

Department of Microbiology Faculty of Science Ain Shams University 2016

Student Name: Neveen Magdy Rizk Mohamed

National Research Centre

Thesis Title: Possible transmission of avian (H5N1) via some aquatic and Degree : Philosophy doctor in science (Micro	imals
This thesis has been approved by:	
1- Prof. Dr. El Sayed Tarek AbdelSalam Sayed Professor of Virology Botany and Microbiology Department Faculty of Science Cairo University	l
2- Prof. Dr. Aly Fahmy Mohamed El Sayed Head of Research and Development Sector The Holding Company for the Production of Vaccines, Sera and Drugs	
3- Prof. Dr. Ahmed Barakat Barakat Professor of Virology Microbiology Department Faculty of Science Ain Shams University	
4- Prof. Dr. Mohamed Ahmed Ali Professor of Virology Water Pollution Department	

Student Name: Neveen Magdy Rizk Mohamed

Thesis Title: Possible transmission of avian influenza A virus (H5N1) via some aquatic animals

Degree : Philosophy Doctor of Science (Microbiology)

This thesis has been supervised by:

1- Prof. Dr. Ahmed Barakat Barakat

Professor of Virology
Microbiology Department
Faculty of Science
Ain Shams University

2- Prof. Dr. Mohamed Ahmed Ali

Professor of Virology Water Pollution Department National Research Centre

3- Prof. Dr. Sahar Ahmed Hafez Showman

Professor of Virology
Microbiology Department
Faculty of Science
Ain Shams University

4- Prof. Dr. Fagr Khamis Abdel Gawad

Professor of Genetics Water Pollution Department National Research Centre

Declaration

I declare that this thesis has been composed by me and that the work of which is a record has done by me. It has not been submitted for a degree at this or any other university.

Neveen Magdy Rizk Mohammad

Dedication

To the spirit of my father,

Lovely mother,

Wonderful Husband,

Dearest brother,

Lovely sons (Malik and

Mariam),

Kind-full friends

Acknowledgment

This is a good chance to express my sincere gratitude to my teachers and my colleagues. Without them, the results presented in this thesis could not have been accomplished. Candidate would like to express my deepest thanks and appreciation to **Prof. Dr. Ahmed Barakat Barakat**, Professor of Virology, Microbiology Department, Faculty of Science, Ain Shams University for his kind supervision and for his revision this thesis with a great care and precision. His guidance and ultimate support are greatly appreciated.

I am greatly indebted to **Prof. Dr. Mohamed Ahmed Ali,** Professor of Virology, Water Research Department, National Research Centre for suggesting the topic of this study, his kind undeniable role in supervising the work, providing the necessary facilities and great assistance, advising during the progress of this work.

The candidate would like also to express my deepest thanks to **Dr. Sahar Ahmed Hafez Showman**, Professor of Virology, Microbiology Department, Faculty of Science, Ain Shams University for her kind supervision and her kind revision this thesis with a great care and precision. Her guidance and ultimate support are greatly appreciated.

Also, I would like to express my deepest thanks to **Prof. Dr. Fagr Khamis Abdel Gawad**, Professor of Genetics, Water Pollution Research Department, National Research Centre for her kind supervision and valuable guidance. I am very lucky to be one of her students.

I would like to thank **Prof. Dr. Gamila Hussein**, professor of Hydrobiology, at National Research Centre for her kind assistance to measure the physicochemical parameters of water in her laboratory.

Many thanks for **Prof. Dr. Kawkab Abd El Aziz Ahmad,** professor of Pathology, Faculty of Veterinary - Cairo University, for her kind assistance in histopathological examination.

Special thanks for my colleagues in virology laboratory, especially **Dr. Rabeh El Shesheny** and **Dr. Ahmed Kandeil,** Researchers at National Research Centre, for their assistances. Candidate cannot forget the assistance of members of *National Research Centre*; *Faculty of Science, Ain Shams University* and *Academy of Scientific Research and Technology*.

Contents

Title	Page no.
Chapter I	O
Introduction	1
Aim of the work	4
Chapter II	
Review of literature	5
1. Influenza viruses	5
1.1. Virus structure	5
1.2. Virus Classification	10
1.2.1. Structure based classification	10
1.2.2. Virulence based classification	10
1.2.3. Genetic based classification	11
2. Avian Influenza A virus	12
2.1. Virus pathogenicity and hosts	12
2.1.1. Characteristics of host cell receptors	20
2.1.2. Characteristics of viral proteins	21
2.1.3. Characteristics of other internal viral	
protein	23
2.1.4. Response of host to infection	24
2.1.5. Most recorded hosts of H5N1	25
3. Incidence of AIV viruses in water animals	29
4. Avian influenza virus infection and	
transmission	30
5. Avian influenza virus Persistence	33
6. Clinical symptoms of AIV infection	39
7. Diagnostic tools of for AIV detection	41
7.1. Isolation and subtyping of the virus by	
classical serological methods	42
7.2. Molecular detection and characterization	
the viral genome	44

8. Pandemic and epidemic of AIV disease	46
Chapter III	
Materials and Methods	51
Water samples Section (A)	51
Physicochemical parameters for Nile and sea	
water	51
	51
Turbidity measurement Hardness measurement	51 52
	5 <u>4</u>
Chloride measurement	
Sulfate measurement	55 56
Nitrite measurement	56
Nitrate measurement	57 57
Iron measurement	57 50
Manganese measurement	59
pH measurement	60
Electric conductivity measurement	61
Color measurement	61
Section (B)	
Determine the stability of avian influenza virus	
H5N1 (Egyptian isolate) in water with different	
environmental conditions	62
Virus	62
Virus propagation	62
Determine the stability of avian influenza virus	
H5N1 (Egyptian isolate) in water	64
Detection of H5N1 virus in collected water	
samples by RT-PCR	65
Extraction of viral RNA from water samples	65
RT-PCR amplification of M gene	67
Agarose electrophoresis for analysis of RT-PCR	
product	68
Detection of the viral RNA in water samples by	
_ ·	69
real- time RT-PCR	U9
Section (C)	
Testing the possible transmission of H5N1 virus	
via Tilpia zillii	71
1	-

Viral RNA extraction from tissues of <i>Tilipia</i>	
zillii fishes	72
Plaque infectivity assay for water samples in	
aquarium	74
1	
Infectivity of virus in eggs and	
Hemagglutination assay (HA)	78
Immunofluorescence assay to detect H5N1 viral	
antigen in fishes' tissue	80
Immunization of chickens for production of	
polyclonal antibodies	80
HI assay	81
Immunofluorescence assay	81
Histological investigations	82
Chapter IV	
Results	85
Section (A)	
Physicochemical parameters for the collected	
surface and sea water	85
Section (B)	
The stability of avian influenza virus H5N1 in	
water with different environmental conditions	87
1. The effect of different pH and temperatures	
on the persistence of LPAI-H5Nl virus in Nile	
water	87
2. Effect of different pH and temperatures on	0.
the persistence of LPAI-H5Nl in sea water	88
Real time RT-PCR detection of the persistence	00
of H5N1 virus at different pH and temperatures	
in Nile and sea water	90
Section (C)	
Examination of possible transmission of H5N1	
virus via aquatic animals (<i>Tilapia zillii</i>)	98
Real time RT-PCR for detection of viral RNA	70
from aquarium water	98
11 VIII AYUAI IUIII WAWI	70

Plaque infectivity assay to detect the survival of	
the infectious viral particles in water	99
Hemagglutination (HA) test	
Detection of LPAI-H5N1 virus in Tilapia zillii	
tissues	101
Immunofluorescence assay	
Histopathological examination	107
Chapter V	
Discussion	108
Chapter VI	
Summary	128
Chapter VII	
References	134
الملخص العربي	1

List of tables

Table	Title	Page
no. Table	Influenza A hemagglutinin subtypes (CDC, 2014)	no. 8
(1)		
Table (2)	Table (2): Influenza A neuraminidase subtypes (CDC, 2014).	9
Table	Cumulative number of confirmed human cases for	9
(3)	avian influenza A(H5N1) reported to WHO, 2003-	
(0)	2015	54
Table	Oligonucleotide primers for detection of AI	
(4)	H5N1 viruses	80
Table	Physical and chemical parameters for surface and	
(5)	sea water	100
Table	Conventional RT-PCR to detect the effect of different	
(6)	pH and temperatures on the persistence of LPAI-H5Nl in surface water	102
Table	Conventional RT-PCR to detect the effect of different	102
(7)	pH and temperatures on the persistence of LPAI-H5Nl	
(-)	in sea water	103
Table	Real time RT-PCR detection of the persistence of	
(8)	H5N1 at pH 6.5 and temperature 20°C in surface and	
	sea water	105
Table	Real time RT-PCR detection of the persistence of H5N1	
(9)	at pH 7 and temperature 20°C in surface and sea	406
T-1-1-	water	106
Table (10)	Real time RT-PCR detection of the persistence of H5N1 at pH 7.5 and temperature 20°C in surface and	
(10)	sea water.	107
Table	Real time RT-PCR detection of the persistence of	107
(11)	H5N1 at pH 8 and temperature 20°C in surface and	
` /	sea water	108
Table	Real time RT-PCR detection of the persistence of	
(12)	H5N1 after exposure to pH 6.5 and temperature 34°C	
	in surface and sea water	109
Table	Real time RT-PCR detection of the persistence of H5N1	
(13)	at pH 7 and temperature 34°C in surface and sea	440
	water	110

i

Table	Real time RT-PCR detection of the persistence of	
(14)	H5N1 at pH 7.5 and temperature 34°C in surface and	
	sea water	111
Table	Real time RT-PCR detection of the persistence of	
(15)	H5N1 at pH 8 and temperature 34°C in surface and	
	sea water	112
Table	Detection of viral persistence in aquarium water by	
(16)	real time RT-PCR	114
Table	Detection of H5N1 virus in fishes' organs by real time	
(17)	RT-PCR	118
Table	Detection of viral antigen by immunofluorescence	
(18)	assay	119

List of figures

Figure no.	Title	Page no.
Figure (1)	Schematic structure of a typical influenza A	
	virus	5
Figure (2)	Role of migratory birds in transmission of	
	avian influenza virus in poultry	17
Figure (3)	Stained 2% agarose showing RT-PCR	
	amplified product of M gene of H5N1	
	isolated from water samples	104
Figure (4)	Persistence of H5N1 in different water types	
8 ()	at pH 6.5 and temperature 20°C	105
Figure (5)	Persistence of H5N1 in different water types	
	at pH 7 and temperature 20°C	106
Figure (6)	Persistence of H5N1 in different water types	100
rigure (0)	at pH 7.5 and temperature 20°C	107
F: (F)		107
Figure (7)	Persistence of H5N1 in different water types	100
T	at pH 8 and temperature 20°C	108
Figure (8)	Persistence of H5N1 in different water types	400
(2)	at pH 6.5 and temperature 34°C	109
Figure (9)	Persistence of H5N1 in different water types	
	at pH 7 and temperature 34°C	110
Figure (10)	Persistence of H5N1 in different water types	
	at pH 7.5 and temperature 34°C	111
Figure (11)	Persistence of H5N1 in different water types	
	at pH 8 and temperature 34°C	112
Figure (12)	Quantitative measurement of genomic copies	
	of viral RNA extracted from water and	
	fishes' organs by Taq-Man Probe real-time	
	RT-PCR.	113
Figure (13)	Plaque infectivity assay to detect the viability	
	of H5N1 in aquarium water samples	115
Figure (14)	Hemaglutination assay to detect H5N1 in	
	aquarium water samples	117
Figure (15)	Immunofluorescence staining for fishes'	120-
	organs	121
Figure (16)	Photo-microscopy showing histopathological	
	characters of fishes' tissues	122