Vascularity Impact on the Treatment Outcome in Malignant Pleural Mesothelioma

A thesis

Submitted for partial fulfillment of master degree in clinical oncology and nuclear medicine

Ny Muna Sami Jassim

Under Supervision of

Dr. Mahmoud Abbas Ellithy

Assistant Professor of Clinical Oncology & Nuclear Medicine Faculty of Medicine – Ain Shams University

Dr. Amr Shafik Tawfik

Lecturer of Clinical Oncology & Nuclear Medicine Faculty of Medicine – Ain Shams University

Dr. Doaa Atef Mohammed

Lecturer of Clinical Oncology & Nuclear Medicine Faculty of Medicine – Ain Shams University

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Dr. Mahmoud Abbas Ellithy,** Assistant Professor of Clinical Oncology & Nuclear Medicine, Faculty of Medicine – Ain Shams University, for his constructive criticism, unlimited help and giving me the privilege to work under his supervision.

My most sincere gratitude is also extended to **Dr. Amr Shafik Tawfik,** Lecturer of Clinical Oncology & Nuclear Medicine, Faculty of Medicine – Ain Shams University, for his enthusiastic help, continuous supervision, guidance and support throughout this work.

Words fail to express my appreciation to **Dr. Doaa Atef Mohammed,** Lecturer of Clinical Oncology & Nuclear Medicine,
Faculty of Medicine — Ain Shams University, for the efforts and time she has devoted to accomplish this work.

I would like also to than all members of the Pathology Department, Abbassia Chest Hospital, for their cooperation and great help in this work.

Last but not least, I can't forget to thank all members of my Family, especially my **Parents** and my **Husband**, for pushing me forward in every step in the journey of my life.

Candidate

Muna Sami

List of Contents

Subject	Page No.
List of Abbreviations	I
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	6
Review of Literature	
Malignant Pleural Mesothelioma	7
Pathology	16
Molecular Aspects of Malignant Mesothelio	ma 24
Diagnosis and Staging of MPM	41
Treatment and Prognosis	53
Patients and Methods	68
Results	72
Discussion	90
Conclusion and Recommendations	100
Summary	102
References	106
Arabic Summary	<u> </u>

List of Abbreviations

Abbr. Full-term

BerEp4 : Tumor glycoprotein

bFGF : Basic fibroblast growth factorCALGB : Cancer and Leukemia Group B

CDK : Cyclin-dependent kinase **CEA** : Carcinoembryonic antigen

CK : Cytokeratin

CNS : Central nervous systemCT : Computed tomography

EGFR : Epidermal growth factor receptor

EMA : Epithelial membrane antigen

EMT : Epithelial to mesenchymal transition

EORTC: Organisation for Research and Treatment of Cancer

EPP : Extrapleural pneumonectomy

GCSF : Granulocyte colony stimulating factor

HIF-1: Hypoxia-inducible factor 1

HLA : Human leuckocyte associated AgHMFG-2 : Human milk fat globule protein-2

IGF : Insulin-like growth factorIHC : Immunohistochemistry

IL1 : Interleukin 1

IMRT : Intensity modulated radiotherapy

LDH : Lactate dehydrogenase

MIF : Macrophage migration inhibitory factor

MOC-31 : Tumor glycoprotein

List of Abbreviations (Cont.)

Alber. Full-term : Malignant pleural effusions **MPE MPM** : Malignant pleural mesothelioma **MRI** : Magnetic resonance imaging NCI : National Cancer Institute NF2 : Neurofibromatosis type 2 OS : Overall survival P/D : Pleurectomy/decortications : Platelet-derived growth factor **PDGF PET** : FDG18- Positron-emission tomography PFS : Progression free survival PGE2 : Prostaglandin E2 **PGF** : Placental growth factor : Prophylactic irradiation to intervention tracts **PIT** ROS : Reactive oxygen species **SV40** : Simian virus 40 T2DM : Type 2 Diabetes mellitus **TGF** : Transforming growth factor : Tyrosin kinase inhibiters **TKIs** TNF : Tumor necrosis factor : Thyroid transcription factor-1 TTF-1 UICC : Union for International cancer control European VEGF : Vascular endothelial growth factor : Von Hippel-Lindau VHL : Wilms tumour gene protein \mathbf{WT}

List of Tables

Eable No	v. Eitle Page No.
Table (1):	Histolopathologocal classification of mesothelioma
Table (2):	Antibodies used in the immunohistochemical staining for differential diagnosis between types of mesotheliomas
Table (3):	Immunohistochemestry panel for malignant mesothelioma and adenocarcinoma
Table (4):	The commonest molecular changes involved in the pathogenesis of MPM
Table (5):	Endogenous regulators of angiogenesis 34
Table (6):	UICC-6 staging classification of malignant pleural mesothelioma
Table (7):	Description of personal and medical characteristics among cases:
Table (8):	Description of clinical characteristics among cases
Table (9):	Description of CD 74(T) and (S) among cases
Table (10):	Means and Medians for progression free Survival among all cases
Table (11):	Means and Medians for overall Survival Time among all cases:
Table (12):	Comparison between patients with different response as regards Progression free survival (PFS)

List of Tables (Cont.)

Cable No	. Eitle	Page No.
Table (13):	Comparison between patients different response as regards survival	overall
Table (14):	Comparison between patients different clinical benefit ratio as overall survival	regards
Table (15):	Relation between CD74 (T) and personal, medical and clinical characteristics among cases	eteristics
Table (16):	Relation between CD74 (S) and personal, medical and clinical characteristics among cases	eteristics
Table (17):	Relation between different combina CD74 (T) and (S) and each of p medical and clinical characteristics cases	ersonal, among
Table (18):	Comparison between patients different combination of CD 74 (T as regards Progression free survival	and S)
Table (19):	Comparison between patients different combination of CD 7 marker as regards overall survival	4(T&S)
Table (20):	Cox regression analysis to independent factors affecting PFS	•
Table (21):	Cox regression analysis to independent factors affecting OS	-

List of Figures

Figure No	. Eitle	Page No.
Figure (1):	Asbestos fiber types.	12
Figure (2):	Gross anatomy of the pleura	16
Figure (3):	An autopsy lung case with thickening of the pleura compression of the underlying lung	causing
Figure (4):	Microphotograph of ep mesothelioma (H&E stain) Papillo structure is prominent	o-tubular
Figure (5):	Microphotograph of sarc mesothelioma (H&E stain)	
Figure (6):	Microphotograph of biphasic mesor (H&E stain).	
Figure (7):	Hematoxylin and eosin-stained (medium power) of pleural sarc malignant mesothelioma subtypes	omatoid
Figure (8):	A schematic diagram indicating the players in transformation of messells to malignant mesotheliomas	sothelial
Figure (9):	The canonical NF2 pathway alternative pathway via mTC affecting the cell cycle	OR for
Figure (10):	Under normal condition, RKIP bl Snail through MAPK inhibition a stabilization	nd NF2
Figure (11):	The six different types of vascular observed in solid tumors	

List of Figures (Cont.)

Figure No	. Citle Page V	lo.
Figure (12):	Posteroanterior chest radiograph shows nodular pleural thickening forming a rind of tumor encasing the right lung	. 45
Figure (13):	Interlobar fissure involvement	. 47
Figure (14):	Malignant mesothelioma	. 47
Figure (15):	Magnetic resonance imaging (MRI) with malignant mesothelioma shows invasion across the diaphragm by tumor	. 49
Figure (16):	The PFS shorter when the expression of CD74 was high when both tumour and stromal cell combined than those combination with low expression of CD74.	. 86
Figure (17):	Combination of tumour and stromal cell with high expression of CD74 had longer overall survival than those with low expression.	. 87

Introduction

alignant mesothelioma is a rare aggressive tumour arising from mesothelial cells of the pleural, peritoneal cavity, pericardium and tunica vaginalis of the testis (*Tischoff et al.*, 2011).

Mesothelioma is estimated to occur in approximately 2500 people in the United States every year, malignant pleural mesothelioma occur mainly in older men (median age of 72 years), median overall survival is approximately 1 year (*David et al.*, 2014).

There are prominent differences in incidence of malignant pleural mesothelioma (MPM) reported from different countries worldwide varying from to 7 per million (Japan) to 40 per million (Australia) inhabitants per year, In Europe the incidence is around 20 per million with large intercountry variation, It is reasonable to accept that these differences are mainly due to differences in historical asbestos import and consumption (*van Meerbeecke et al.*, 2011).

Malignant pleural mesothelioma is most common (MPM), whereas malignant peritoneal mesothelioma accounts only for 6-10%, Infrequent sites of origin are the pericardium and tunica vaginalis in 1-2%, malignant mesothelioma shows either diffuse growth pattern or occurs

as a localized tumour mass, Diffuse type represents an aggressive tumour with poor prognosis and is incurable in most cases (*Tischoff et al.*, *2011*). There are three major types: epithelioid type, sarcomatoid type and biphasic type and the proportion of each is approximately 60, 20 and 20%, respectively. The desmoplastic type is rare probably 1–2% (*Inai*, *2008*).

A lot of data indicate a relationship between mesothelioma and asbestos, the latency periods elapsing between first exposure to asbestos and development of mesothelioma are mostly longer than 40Years, Some recent studies show that the risk increases with the duration of exposure, Possible co-factors in the pathogenesis of asbestos-related mesothelioma include genetic predisposition, diets poor in fruit and vegetables, viruses, immune impairment, recurrent serosal inflammation (*Bianchi et al.*, 2007).

Although the mechanism of carcinogenesis is not fully understood, Several molecular pathways involved in malignant pleural mesothelioma have been identified; these include cell cycle regulation, apoptosis, growth factor pathways, and angiogenesis, (*Zucalia et al., 2011*).

Hallmarks of asbestos fibres inhalation included early and sustained inflammation causally attributed to initial accumulation of alveolar macrophages promoting the subsequent generation of reactive oxygen species (ROS) that cause DNA damage and induce cells to proliferate in a chronic inflammatory milieu, that induce mesothelial cells transcription and production of cytokine which critical to the initiation of injury, fibrosis and tumor Thus, the oxidants and growth factors seem to be responsible for both dysregulation of mitogenic signaling and loss of tumor suppressor proteins that may govern malignant mesothelioma pathogenesis (*Comar et al.*, 2014).

The tumours require the continuous formation of new blood vessels in order to grow. Malignant mesothelioma cells produce angiogenic factors, such as vascular endothelial growth factor (VEGF) (*Robinson and Lake, 2005*). Macrophage migration inhibitory factor (MIF) and its receptor CD74 found to be associated with angiogenic activity (*McClelland et al., 2009*).

Vascular endothelial growth factors (VEGFs) belong to the platelet-derived growth factor supergene family (*Shibuya*, 2013), Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) have crucial roles in both physiological and pathological angiogenesis (*Akahashi*, 2011). The blockage of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumour growth (*Moreira et al.*, 2007).

The expression of receptor-ligand pair in associated with the angiogenic activity that macrophage migration inhibitory factor(MIF) induces expression of angiogenic CXC chemokines by tumour-associated monocytes and that MIF-dependent expression of angiogenic CXCchemokines is one of several major pathways by which cancer tumoursinduce an angiogenic environment (*McClelland et al.*, 2009).

Malignant pleural mesothelioma clinically manifests after decades of initial exposure to etiologic agents, such as asbestos, and presents with nonspecific symptoms such as dyspnea, pain, or weight loss (*Ramalingam and Belani*, 2008). The definite diagnosis can only be established by diagnostic laparoscopy or open surgery along with biopsy to obtain histological examination and immunocytochemical analysis (*Ahmed et al.*, 2013). The type of mesotheliomas and stage at diagnosis remain the cornerstone for treatment approach (*Propodisk et al.*, 2013).

Factors associated with poor prognosis in patients with MPM include:

Old age, poor performance status (PS), advance disease stage, chest pain thrombocytosis, weight loss, asbestos exposure and long duration of symptoms (*Shuko Nojir et al.*, 2011).

National guidelines recommend that patients with MPM be managed by a multidisciplinary team with experience in MPM, Treatment options for patients with MPM include surgery, radiotherapy, and/or chemotherapy (*David et al.*, 2014). Currently, malignant pleural mesothelioma therapy is guided by clinical stage and patient characteristics rather than by the histological or molecular features of the tumor (*Zucalia et al.*, 2011).

The aim of radical surgery for malignant pleural mesothelioma (MPM) is to achieve greater survival (*Nakas and Waller*, 2014).

This disease is largely unresponsive to conventional chemotherapy or radiotherapy, and most patients die within 10–17 months of their first symptoms (*Zucalia et al.*, *2011*).

Targeted therapy used in MPM such as antiangiogesis agents, immunotherapy, signaling pathway inhibitors (*Shukla and Shukla, 2014*), still has an important role in mesothelioma in controlling the symptom and improve quality of life (*Lang-Lazdunskil, 2014*).