Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt (NewVally)

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By **Ahmed Yousef Mohommed**

M.B.B.CH. - Cairo University

Under Supervision of

Prof. Dr. Gamal El Sayed Mady

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Heba Waheid AlSa

assistant Professor of Internal Medicine and Nephrology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to Prof Dr. Gamal El Sayed Mady, Professor of Internal Medicine and nephrology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. he has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to Prof Dr. Heba Waheid Al Saied assistant Professor of Internal Medicine and nephrology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to Dr. Yahya Makkeyah Lecturer of Internal Medicine and nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Ahmed Youssef Mohommed Ahmed

LIST OF CONTENTS

Title	Page No.
	1
Introduction	1
Aim of The Work	3
REVIEW OF LITERATURE	
Chapter 1: History of Hemodialysis	8
Chapter 2: Hemodialysis prescription	8
Chapter 3: Hemodialysis associated comorbidities	35
Chapter 4: Guidelines for kidney diseases	41
Chapter 5: Hemodialysis in Egypt	52
Patients and Methods	56
Results	61
Discussion	85
Summary and conclusion	95
Recommendations	100
References	101
Arabic Summary	

LIST OF TABLES

Table No. Title		Page	
Table (1):	Elements of Hemodialysis Prescription	9	
Table (2) :	Gender and age distribution in the study population	61	
Table (3) :	Different causes of ESRD in the study population	62	
Table (4) :	Different comorbidities in the study population	63	
Table (5) :	Work status in the study population	64	
Table (6):	Dependancy status in the study population	66	
Table (7):	Frequency of HD sessions/week in the study population	67	
Table (8):	Duration of HD session in the study population	68	
Table (9):	Sponsoring status in the study population	69	
Table (10):	Type of vascular access in the study population	70	
Table (11):	Frequency of access failure in the study population	71	
Table (12) :	The levels of Hemoglobin	72	
Table (13):	Hemoglobin category in the study population	72	
Table (14):	History of blood transfusion in the study population	73	
Table (15):	Different types of ESA used by the study population.	75	
Table (16) :	History of iron injection in the study population	76	
Table (17):	History of vitamines use in the study population	77	
Table (18) :	The levels of Calcium	78	
Table (19) :	Calcium levels in the study population	78	

LIST OF TABLES (Cont....)

Table No.	Title	Page
Table (20): Different	types of phosphorus binders used by the	study
population	1	79
Table (21: Types of c	omplications during HD session in the st	udy
population	1	80
Table (22): Viral statu	us in the study population	81
Table (23): Criteria o	f dialyzer used in the study population	82
Table (24): Criteria o	f dialysate used in the study population	82
Table (25): Different	anticoagulation used in study population	ı83
Table (26): Dry weigh	ht &weight gain in study population	84

LIST OF FIGURES

Figure No.	Title	Page
Figure (1):	Mechanisms of solutes removal in hemodialysis	12
Figure (2):	Comparison of urea clearance rates between low-	ınd high-
	efficiency hemodialyzers	18
Figure (3):	Water permeability of a membrane and con	ntrol of
	volumetric ultrafiltration in hemodialysis	21
Figure (4):	Pathways of thrombogenesis in extracorporeal circu	its25
Figure (5):	The development of clinical practice guidelines	43
Figure (6):	Gender distribution in the study population	61
Figure (7):	Different causes of ESRD in the study population	62
Figure (8):	Different comorbidities in the study population	64
Figure (9):	Work status in the study population	65
Figure (10):	Dependancy status in the study population	66
Figure (11):	Frequency of HD sessions/week in the study popula	tion67
Figure (12):	Duration of HD session in the study population	68
Figure (13):	Sponsoring status in the study population	69
Figure (14):	Type of vascular access in the study population	70
Figure (15):	Frequency of access failure in the study population.	71
Figure (16):	Hemoglobin category in the study population	73
Figure (17):	History of blood transfusion in the study Population	74
Figure (18):	Types of ESA used by the study population	75
Figure (19):	History of iron injection in the study population	76
Figure (20):	History of vitamines use in the study population	77

LIST OF FIGURES (Cont....)

Figure No.	Title	Page
Figure (21):	Calcium levels in the study population	79
Figure (22):	Different types of phosphorus binders used by	the study
	population	80
Figure (23):	Types of complications during HD session in	the study
	population	81
Figure (24):	Viral status in the study population	82
Figure (25):): Different anticoagulation used in study population	ion83

LIST OF ABBREVIATIONS

Abbrev.	Full term
\mathbf{AV}	Arteriovenous access
BFR	Blood flow rate
BMI	Body mass index
BP	Blood pressure
BUN	Blood Urea Nitrogen
CAPD	continuous ambulatory peritoneal dialysis
CAPR	Cardiopulmonary recirculation
CKD	Chronic kideny disease
CMS	US Centers for Medicare and Medicaid
	Services
CPG	clinical practice guidelines
CRP	C- reactive protein
CVC	Chronic venous cathter
CVD	Cardiovascular disease
DFR	Dialysate flow rate
\mathbf{DM}	Diabetus mellitus
DOPPS	Dialysis outcome and practice pattern study
ERA-EDTA	the European Renal Association-European
	Dialysis and Transplantation association
ESRD	End stage renal disease
GFR	Glomerular filtration rate
GraDe	Grades of recommendation assessment,
	Development, and evaluation
HBV	Hepatitis B Virus
HCV	Hepatitis C Virus

LIST OF ABBREVIATIONS (Cont....)

Abbrev.	Full term
Ш	II
HD	Hemodialysis
HDF	Hemodiafiltration
HF	Hemofiltration
HTN	Hypertension
IPD	Intermittent peritoneal dialysis
K/DOQI	Kidney Disease Outcome Quality Initiative
KDIGO	Kidney disease improving global outcomes
KOA	The mass transfer area coefficient
MIA	Malnutrition -Inflammation atherosclerosis
	(MIA) Syndrome
MICS	'malnutrition_inflammation complex
	syndrome'
MOH	Ministry of health
NKF	National Kidney Foundation
PEM	Protein energy malnutrition
QIP	Qulaity improvement programs
RRT	Renal replacement therapy
SRI	Solute removal index
TMP	Transmembrane pressure
TNF	Tumor necrosis factor
UF	Ultrafiltration
UKM	Urea kinetic modeling
UpostHD	Urea posthemodialysis
UpreHD	Urea prehemodialysis
URR	Urea reduction ratio
2M	Beta 2 microglobulin
(K_{uf})	The ultrafiltration coefficient
\ u1/	

INTRODUCTION

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%-40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited .(Locatelli et al., 2004)

Appropriately then, the care of dialysis patients has been the prime focus of nephrology, particularly after the widespread availability of maintenance dialysis when it became evident that mortality of dialyzed patients was high and their quality of life far from adequate. (*Eknoyan et al,2002*)

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured. (*Locatelli et al.*, 2004)

Compliance with clinical guidelines is an important indicator of quality and efficacy of patient care, at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice. (*Cameron*, 1999)

End-stage renal disease (ESRD) is one of the main health problems in Egypt. Currently, hemodialysis represents the main mode for treatment of chronic kidney disease stage 5 (CKD5), previously called ESRD or chronic renal failure .(*Afifi*, 1999)

Although hemodialysis is often used for treatment of ESRD, no practice guidelines are available in Egypt. Healthcare facilities are seeking nowadays to develop practice guidelines for the sake of improving healthcare services. (*Ministry of Health and Population*,1999)

AIM OF THE WORK

To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription, stressing on anemia, bone disease management and adequacy of dialysis.

History Of Hemodialysis

any have played a role in developing dialysis as a practical treatment for renal failure, starting with Thomas Graham of Glasgow, who first presented the principles of solute transport across a semipermeable membrane in 1854. (Graham T. 1861)

The artificial kidney was first developed by <u>Abel</u>, Rountree, and Turner in 1913. (**Abel JJ.**, et al 1913).

the first hemodialysis in a human being was by Hass (February 28, 1924), and the artificial kidney was developed into a clinically useful apparatus by Kolff in 1943 - 1945.

Willem Kolff was the first to construct a working dialyzer in 1943. The first successfully treated patient was a 67-year-old woman in uremic coma who regained consciousness after 11 hours of hemodialysis with Kolff's dialyzer in 1945. At the time of its creation, Kolff's goal was to provide life support during recovery from acute renal failure. After World War II ended, Kolff donated the five dialyzers he had made to hospitals around the world, including Mount Sinai Hospital, New York. Kolff gave a set of blueprints for his hemodialysis machine to George Thorn at the Peter Bent Brigham Hospital in Boston. This led to the manufacture of the next generation of Kolff's dialyzer, a stainless steel Kolff-Brigham dialysis machine. (Kolff, W. J., and Berk, H. T. J, 1944).

According to McKellar (1999), a significant contribution to renal therapies was made by Canadian surgeon Gordon Murray with the assistance of two doctors, an undergraduate chemistry student, and research staff. Murray's work was conducted simultaneously and independently from that of Kolff. Murray's work led to the first successful artificial kidney built in North America in 1945–46, which was successfully used to treat a 26-year-old woman out of a uraemic coma in Toronto. The less-crude, more compact, second-generation "Murray-Roschlau" dialyser was invented in 1952–53, whose designs were stolen by German immigrant Erwin Halstrup, and passed off as his own (the "Halstrup–Baumann artificial kidney").

By the 1950s, Willem Kolff's invention of the dialyzer was used for acute renal failure, but it was not seen as a viable treatment for patients with stage 5 chronic kidney disease (CKD). At the time, doctors believed it was impossible for patients to have dialysis indefinitely for two reasons. First, they thought no man-made device could replace the function of kidneys over the long term. In addition, a patient undergoing dialysis suffered from damaged veins and arteries, so that after several treatments, it became difficult to find a vessel to access the patient's blood. (McKellar, S,1999).

The original Kolff kidney was not very useful clinically, because it did not allow for removal of excess fluid. Swedish professor Nils Alwall encased a modified version of this kidney inside a stainless steel canister, to which a negative pressure could be applied, in this way effecting the first truly practical application of hemodialysis, which was done in 1946 at the University of Lund. Alwall also was arguably the inventor of the arteriovenous shunt for dialysis. He reported this first in 1948 where he used such an arteriovenous shunt in rabbits. Subsequently he used such shunts, made of glass, as well as his canister-enclosed dialyzer, to treat 1500 patients in renal failure between 1946 and 1960, as reported to the First International Congress of Nephrology held in Evian in September 1960. Alwall was appointed to a newly created Chair of Nephrology at the University of Lund in 1957. Subsequently, he collaborated with Swedish businessman Holger Crafoord to found one of the key companies that would manufacture dialysis equipment in the past 50 years, Gambro. The early history of dialysis has been reviewed by Stanley Shaldon (Shaldon S. 2002).

Belding H. Scribner, working with the surgeon Wayne Quinton, modified the glass shunts used by Alwall by making them from Teflon. Another key improvement was to connect them to a short piece of silicone elastomer tubing. This formed the basis of the so-called Scribner shunt, perhaps more properly