EFFECTS OF METAL OXIDES NANOPARTICLE FILLERS ON ETHYLENE-PROPYLENE-DIENE RUBBER (EPDM) PROPERTIES

By Eng. Yasser Mohamed Tufik Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment
of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
CHEMICAL ENGINEERING

Faculty of Engineering, Cairo University Giza, Egypt 2017

EFFECTS OF METAL OXIDES NANOPARTICLE FILLERS ON ETHYLENE-PROPYLENE-DIENE RUBBER (EPDM) PROPERTIES

By Eng. Yasser Mohamed Tufik Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment
of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
CHEMICAL ENGINEERING

Under the Supervision of

Prof. Dr. Ehab Fouad Abadir

Faculty of Engineering, Cairo University **Prof. Dr. Sahar El-Marsafy**Faculty of Engineering,
Cairo University

Prof. Dr. Mohmed Samir

Mobark Academy

Prof. Dr. Ahmed EsmailNational Research Center

Faculty of Engineering, Cairo University Giza, Egypt 2017

EFFECTS OF METAL OXIDES NANOPARTICLE FILLERS ON ETHYLENE-PROPYLENE-DIENE RUBBER (EPDM) PROPERTIES

By Eng. Yasser Mohamed Tufik Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment
of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
CHEMICAL ENGINEERING

Approved by the Examining committee

Prof. Dr. Ehab Fouad Abadir Thesis Main Advisor

Prof. Dr. Sahar Mohammed El-Marsafy Member

Prof. Dr. Shadia Shafik Aggour Internal Examiner

Prof. Dr. Salwa Hasan El-Sabbagh External Examiner

National Research Center

Faculty of Engineering, Cairo University
Giza, Egypt
2017

Engineer's Name: Yasser Mohammed Tufik Ali

Date of Birth: 12/4/1967 **Nationality:** Egypt

E-mail: yassxx2176@yahoo.com

Phone: 01064002678

Address: 33 Mahmood Gonium st. Naser City

Registration Date: 16/12/2008 **Awarding Date:** / /2017

Degree: Doctor of Philosophy **Department:** Chemical Engineering

Supervisors: Prof. Dr. Ehab Fouad Abadir

Prof. Dr. Sahar El-Marsafy

Prof. Dr. Ahmed Esmail (National Research Center)

Prof. Dr. Mohmed Samir (Mobark Academy)

Examiners:

Prof. Dr. Salwa Hasan El-Sabbagh (National Research Center)

Prof. Dr. Shadia Shafik Aggour

Prof. Dr. Ehab Fouad Abadir (Thesis main advisor)

Prof. Dr. Sahar El-Marsafy (Member)

Title of Thesis:

EFFECTS OF METAL OXIDES NANOPARTICLE FILLERS ON ETHYLENE PROPYLENE-DIENE RUBBER (EPDM) PROPERTIES

Key Words:

Metal oxides; Nanoparticle; Fillers; EPDM

Summary:

The present work is concerned with improving the mechanical properties and thermal stability of Ethylene propylene diene monomer EPDM by using metal oxide nanofillers. Metal oxide nanoparticles (nMO) such as (nCuO), (nFe₂O₃), (nZnO) and (nNiO) (size 50–100 nm) are synthesized by Sol-Gel technique and characterized. The effect of incorporating nMO, as nanofillers on the curing vulcanization behavior, morphology, mechanical properties, swelling and thermal properties of ethylene-propylene-di ene EPDM elastomer compound is studied. The obtained results of the new composite were compared with ethylene-propylene-diene (EPDM) elastomer filled by conventional metal oxide (cMO) such as (cFe₂O₃, cNiO, cZnO, cCuO).

AKNOWLEDGEMENTS

First and before all, I would like to thank **ALLAH** who granted me the ability to perform this thesis and helped me to pass safely through all the difficulties which i thought impossible to overcome.

I wish to thank **Prof. Dr. Ehab Abadir**, Faculty of Engineering, Cairo University, for the guidance, encouragement, kindness, and support that he provided as a supervisor.

I would like to dedicate this work to **Prof. Dr. Sahar El-Marsafy**, Faculty of Engineering Cairo University, for the guidance, encouragement, kindness that she provided as a supervisor.

I would also like to sincerely thank **Dr. Ahmed Esmail**, Professor of Polymer Chemistry, National Research Center for suggesting the topic of this work, his precious supervison, continuous effort and help to have this work done.

I wish to express my deep appreciation to Prof. **Dr. Mohmed Samir**, Mobark Academy, for his unfailing supervision and kind guidance throughout this work.

I would also like to extend this gratitude to all those who sincerely helped me: including **Prof. Dr. Ibrahim Sabahy**, and **Prof. Dr. Hamed Mohamed**, Faculty of Science AL Azhar University. I sincerely appreciate their time, effort, and critical evaluation of my work.

In particular, I would like to thank **Prof. Dr Samy Habib**, Nanotechnology Research Center King Abdel Aziz Universty (KAU). Additionally, I would like to acknowledge the researchers working at KAU, who have been invaluable resources for assistance with material characterization. Specifically, **Prof. Dr Abdullah Wazan** and Eng. Abdullah Al Zahrani.

This research was conducted at the Egyptian National Research Center, Mobark Academy, AL Azhar University and Nano-technology Research Center KAU.

Finally, I would not have been able to complete this work without the patience and support I received from my wife and my parents.

TABLE OF CONTENTS

Page
AKNOWLEDGEMENTS
TABLE OF CONTENTS i
LIST OF TABLES vi
LIST OF FIGURES vii
NOMENCLATURE ix
ABSTRACT xii
CHAPTER (1) INTRODUCTION
CHAPTER (2) HISTORICAL REVIEW
2.1 Ethylene propylene diene rubbers (EPDM)
2.1.1 Vulcanization of EPDM
2.1.1.1 Sulfur vulcanization
2.1.1.2 Peroxide Vulcanization
2.1.2 Effects of Crosslink Density and Crosslink type
2.1.3 Additives to Improve Crosslinking Efficiency6
2.1.4 Reinforcement of Elastomers
2.2 Effect of Activators in Accelerated Sulphur Vulcanisation in
Rubbers
2.2.1 ZnO as Activator for Sulphur Vulcanisation
2.2.2 Effects of ZnO as Activator of Accelerated Vulcanisation 9
2.2.3 Effects of Nano ZnO as Activator
2.2.4 Synergistic Effects of Stearic Acid
2.2.5 Zinc Oxide optimisation as Activator for Sulphur vulcanization
in EPDM Rubbers 10
2.3 Various Metal effect of Oxide as Activator for Sulphur vulcanization
in EPDM Rubbers 11

2.3.1 The Comparison of Metal Oxides In with ZnO	12
2.3.2. Metal Oxides as Activator in EPDM Rubber Compounds	12
2.4 Nanotechnology in polymeric materials	15
2.5 Types of Nanofillers	. 15
2.5.1 Spherical Nanoparticles	16
2.5.1.1 Metal oxide nanoparticles	16
2.5.1.1.1 preparation of copper oxide (CuO) nanoparticles	17
2.5.1.1.2 preparation of iron oxide (Fe ₂ O ₃) nanoparticles	17
2.5.1.1.3 preparation of ZnO nanoparticle	17
2.5.1.1.4 preparation of NiO nanoparticles	18
2.5.2 Layered Silicates	18
2.5.3 Nanotubes	18
2.5.4 Bionanofillers.	18
2.6 Methods of producing Metal oxide nanoparticles	18
2.6.1 Synthesis metal oxide nanoparticle by Sol-gel technique	19
2.6.1.1 The complexing sol–gel synthesis	20
2.6.1.2 Applications of Sol–Gel in Nanotechnologie	23
2.6.1.3 Economic Aspects.	24
2.6.2 Nanoparticle synthesis in microemulsions	24
2.6.3 The co-precipitation Method.	24
2.6.4 Hydrothermal synthesis Method	24
2.7 Rubber Nanocomposites	25
2.7.1 Advantages of Rubber Nanocomposites	25
2.7.2 Challenges of Rubber Nanocomposites	26
2.8 Diffusion and transport of toluene through nano and conventional	ıl
metal oxide/EPDM,	26
2.8.1 Diffusion coefficient (D)	26
2.8.2 Sorption coefficient (S)	26

2.8.3 Permeability coefficient (P)	27
2.8.4 Transport Mechanism.	27
2.8.5. Activation parameter.	. 27
2.9 Thermal Degradation Kinetics	28
2.9.1 Kinetic methods used in calculating activation energy	28
CHAPTER (3) STATEMENT OF THE PROBLEM	29
CHAPTER (4) MATERIALS & EXPERIMENTAL TECHNIQUES	30
4.1 Plan of work.	30
4.2 Materials and methods	. 30
4.2.1 materials.	. 30
4.2.2 Experimental setup.	33
4.2.2.1 Experimental apparatus	33
4.2.2.2 Drying oven	33
4.2.2.3 Maffle system	34
4.2.2.4 Other equipment and auxiliaries	34
4.2.3 Methods	34
4.2.3.1 Preparation of metal oxide by Sol-Gel process	34
4.2.3.2 Processing EPDM/metal oxide nanocomposites	36
4.2.3.2.1 EPDM Rubber Formulations	36
4.3 Characterization	39
4.3.1 Morphological study of metal oxide nanoparticles XRD,	
FESEM and TEM	39
4.3.1.1 X-ray diffraction analysis.	39
4.3.1.2. Scanning electron microscopy (SEM)	. 39
4.3.1.3 Transmission electron microscopy	39
4.3.2 Characterization of metal oxide EPDM/ MO rubber	.39
4.3.2.1 Scanning electron microscopy (SEM)	39

4.3.2.2 Cure Characteristics	40
4.3.2.3. Mechanical test	40
4.3.2.4 Diffusion and transport of toluene through	
EPDM/metal oxide	. 41
4.3.2.5 Thermogravimetric analysis (TGA) and (DSC)	42
4.3.2.5.1 Thermal Degradation Kinetics Calculations	. 42
4.3.2.5.2 Activation Energy	43
4.3.2.5.3 Reaction Order and Frequency Factor	45
CHAPTER (5) RESULTS AND DISCUSSION	46
5.5. Characterization	46
5.1.1 Characterization of nano and conventional metal oxide	46
5.1.1.1 X- ray diffraction (XRD)	46
5.1.1.2 Transmission electron microscopy (TEM) of nanoparticl	e48
5.1.1.3 SEM of metal oxide nanoparticle nMO	51
5.1.2. Characterization of EPDM/MO nanocomposite	52
5.1.2.1 SEM of EPDM/MO elastomer	52
5.1.2.2 Cure rheological characterization	54
5.1.2.3 Mechanical Properties	57
5.2 Diffusion and transport of toluene through EPDM/nMO and	
EPDM/cMO.	60
5.2.1 Diffusion coefficient (D)	60
5.2.2 Sorption coefficient (S)	61
5.2.3 Permeability coefficient (P)	62
5.2.4 Transport Mechanism.	62
5.2.5. Activation parameter	63
5.3. Thermal Degradation Kinetics of EPDM/nMO and EPDM/cMO.	65
5.3.1. Comparative TG, DTG and DTA studies	65

5.3.2. Comparison of degradation activation energies of EPDM/nMC) and
EPDM/cMO	65
CHAPTER (6) SUMMARY AND CONCLUSIONS	68
REFERENCES	70
ANNEXES	80
ARABIC ABSTRACT	

LIST OF TABLES

		page
Table (2.1)	Properties of EPDM compounds with different metal	
	oxides	13
Table (4.1)	drying oven apparatus with a temperature control unit	34
Table (4.2)	EPDM Formulations containing different metal oxide nanoparticle and conventional metal oxide Fillers.	37
Table (4.3)	Kinetic methods used in computing activation energy	
	in this thesis	43
Table (5.1)	The average grain size in nano and conventional metal	
	oxide	47
Table (5.2)	Cured Rheometric Characteristics at 152 °C of	56
	EPDM/nMO and EPDM/cMO	
Table (5.3)	Mechanical Properties of EPDM/nMO and EPDM/cMO	57
Table (5.4)	Sorption data of EPDM/nMO and EPDM/cMO at	62
1 aute (3.4)	different Temp.	02
Table (5.5)	Values of equilibrium toluene uptake Q _t (Mol%) and	63
	parameters n and k for EPDM/nMO and EPDM/cMO at different Temp.	
Table (5.6)	Values of activation energies of diffusion E_D ,	64
14010 (5.0)	permeation E_p and heat of solution ΔHs for	01
	EPDM/nMO and EPDM/cMO.	
Table (5.7)	Data calculated from TG, DTG and DTA thermograms	
	of samples at a heating rate of 20 °C min ⁻¹	65
Table (5.8)	Activated Energy determined by Kissinger, Friedman	
	and Ozawa Method.	66
Table (5.9)	Frequency Factor determined by Kissinger, Friedman,	67
	and Ozawa Method	
Table(5.10)	Reaction order determined by Kissinger, Friedman, and	67
	Ozawa Methods.	

LIST OF FIGURES

		Pa
Figure (2.1)	General structure of EPDM	4
Figure (2.2)	EPDM diene monomers.(a) 1, 4-hexadiene, (b)	4
	ethylidene norbornene, (c) dicyclopentadiene	
Figure (2.3)	EPDM crosslink structures	
Figure (2.4)	Cure characteristics with different EPDM/MO	1
Figure (2.5)	Swelling and crosslink density of EPDM compounds	1
	with different metal oxide as activator	
Figure (2.6)	Cure characteristics of EPDM with different metal	
	oxides	1
Figure (2.7)	Swelling and crosslink density of EPDM with different	
	metal oxides	1
Figure (2.8)	Different classes of simplest nanostructures of metal	
	oxides	1
Figure (2.9)	Methods of producing Metal oxide nanoparticles	1
Figure(2.10)	Sol-Gel synthesis of inorganic ceramic materials	-
Figure(2.11)	Sol to Gel transformation	4
Figure(2.12)	Sol-Gel synthesis of inorganic ceramic materials	4
Figure(2.13)	Schematical illustration of aging processes in the	
	synthesis of nanoparticles	2
Figure(2.14)	Diagram of the two sol-gel routes used in inorganic	
	nanoparticle preparation	2
Figure (4.1)	Experimental setup	3
Figure (4.2)	Drying oven	3
Figure (4.3)	Preparation scheme for the metal oxide nano-powder	3
	sol-gel method	
Figure (4.4)	Shows a two series of EPDM Rubber were prepared	3
Figure (4.5)	The fourth step for EPDM Preparation	3
Figure (4.6)	The curing characteristics and cure rate of EPDM /MO	4
	rubber	
Figure (4.7)	ASTM D638 type V dumbbell specimen	4
Figure (5.1)	XRD patterns of EPDM/nFe ₂ O ₃ and EPDM/cFe ₂ O ₃	4
Figure (5.2)	XRD patterns of EPDM/nZnO and EPDM/cZnO	2
Figure (5.3)	XRD patterns of EPDM/n CuO and EPDM/cCuO	4
Figure (5.4)	XRD patterns of EPDM/nNiO and EPDM/cNiO	4
Figure (5.5)	TEM micrograph of Fe ₂ O ₃ nanoparticle	4
Figure (5.6)	TEM micrograph of nCuO nanoparticle	4

Figure (5.7)	TEM micrograph of nZnO nanoparticle	50
Figure (5.8)	TEM micrograph of nNiO nanoparticle	50
Figure (5.9)	Schematical illustration of colloid particles	50
	conglomeration with EG sol–gel process	
Figure(5.10)	SEM images of (a) nFe ₂ O ₃ (b) nNiO	51
Figure(5.11)	a,b SEM images of nZnO	51
Figure(5.12)	a,b SEM images of the as-prepared CuO	51
Figure(5.13)	SEM images of EPDM/nZnO (A)	52
	EPDM/cZnO(B)	
Figure(5.14)	SEM images of EPDM/nNiO (A), EPDM/cNiO (B)	53
Figure(5.15)	SEM images of EPDM/nCuO (A), EPDM/cCuO (B)	54
Figure(5.16)	SEM images of EPDM/nCuO (A) EPDM/cCuO (B)	54
Figure(5.18)	The curing characteristics curves of EPDM/nMO (A)	55
	and EPDM/cMO (B) at 162°C	
Figure(5.19)	Scorch and cure time of EPDM/nMO and EPDM/cMO.	56
Figure(5.20)	Cure rate index for EPDM/nMO and EPDM/cMO	56
Figure(5.21)	M _H : maximum torque with different EPDM/nMO and	56
	EPDM/cMO	
Figure(5.22)	M _L : minimum torque with different EPDM/nMO	57
	and EPDM/cMO	
Figure(5.23)	Tensile strength (MPa) with different EPDM/nMO and	58
	EPDM/cMO	
Figure(5.24)	Elongation at break (%) with different EPDM/nMO	59
	and EPDM/cMO	
Figure(5.25)	Tensile Modulus of EPDM/nMO and EPDM/cMO	59
- 1 (7.5.5)	composites at 100% elongation.	- 0
Figure(5.26)	Tensile Modulus at 300% elongation of different	59
F: (5.05)	EPDM/nMO and EPDM/cMO composites	
Figure(5.27)	Plot of sorption data Q_t (% mol) of EPDM/nMO (A)	60
F' (7.00)	and EPDM/cMO (B) at 20°C	C 1
Figure(5.28)	Plot of sorption data Q_t (% mol) of of EPDM/nMO (A)	61
Eiguno (5.20)	and EPDM/cMO (B) at 40°C	<i>(</i> 1
Figure(5.29)	Plot of sorption data Q_t (% mol) of EPDM/nMO (A) and EPDM/cMO (B) at 60° C	61
	and Erdivi/civio (d) at ou°c	

NOMENCLATURE

A frequency factor, (min⁻¹)

CRI Cure rate index CuO Copper oxide

cMO Conventional metal oxideDTG Differential thermogravimetry

D Diffusion coefficient

EG Ethylene glycol

EPDM Ethylene propylene diene monomer

E Activation energy [kJ/mol]

 $E_{\rm X}$ The activation parameters of diffusion or permeation,

either E_D or E_P .

 E_D The activation parameters of diffusion E_P The activation parameters of permeation E_a Apparent activation energy at α [kJ/mol]

Fe₂O₃ Iron Oxide

f(x) The function of the conversion

h The rubber thickness, m

k A constant depends on the polymer morphology and the

polymer-solvent interaction

k Rate constant (min)

M Molecular weight, g/mole

MO Metal oxide

 $\begin{array}{ll} MEG & Mono\text{-ethylene glycol} \\ M_H & Maximum torque, \\ M_L & Minimum torque, \end{array}$

 M_{∞} The mass of toluene sorbed at equilibrium M_0 The initial mass of EPDM/metal oxide

MWLR Maximum weight loss rate corresponding to DTG peak

maxima, (% min⁻¹)

MDR Monsanto Moving Die Rheometer

NiO Nikel Oxide

nMO Metal oxide nanoparticle

n Reaction order [-]

n Value determines mode of transport of toluene through the

EPDM

Phr: Part per hundred parts of rubber.

P Permeability coefficient PEG Polyethylene glycol Q_t Molar percentage uptake at time t The equilibrium absorption or swelling Q_{α} Gas constant (8.3134 J K⁻¹ mol⁻¹) or 82.0567 cm³atm/deg.mol R \mathbb{R}^2 Linear regression S The sorption coefficient t Time, (min) Cure time t_{90} Scorch time t_2 √t Square root of time T Tempreatur T_{m} Maximum temperature peak, Tempreature at maximum convertion [°C] T_i Initial degradation temperature, (°C) Thermogravimetry analysis TGA Weight of swollen rubber [g] W_S Weight [g] \mathbf{W}_{t} Initial Weight [g] \mathbf{w}_0 Final Weight [g] W_{f} X-ray difraction XRD Amount adsorbed, mole \boldsymbol{x} A constant representing either D or P, X X_0 A constant representing either D_0 or P_0 , Convertion (-) X ZnO Zinc Oxide Denotes moles of solvent sorbed at equilibrium swelling \mathbf{Z} **Greek Symbols** $\Delta H_{\rm S}$ The heat of sorption The slope of the initial linear portion of the plot of Q_t θ against \sqrt{t} , Heating rate, (°C min⁻¹) β