Ultrasound Screening for Early Detection of Congenital Kidney and Urinary Tract Abnormalities in Neonates

Thesis
Submitted for Partial Fulfillment of
Master Degree in Pediatrics

By

Ebram Awny Ebrahim Morkos M.B., B.CH.

Supervised By

Prof. Dr. Mohammed Samy El Shimi

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Lobna Abdel-Monaim Habib

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Nancy Mohammed Abu-Shady

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2011

عمل مسح بواسطة جهاز الموجات فوق الصوتية للكشف المبكر عن العيوب الخلقية للكلى و مجرى البول للأطفال حديثي الولادة

رسالة تمهيدية توطئة الحصول على درجة الماجستير في طب الأطفال مقدمة من ابرام عونى ابراهيم مرقص بكالوريوس الطب و الجراحة

تحت إشراف

الأستاذ الدكتور/ محمد سامى الشيمى الشيمى أستاذ طب الأطفال كلية الطب جامعة عين شمس

الأستاذ مساعد الدكتور/ لبنى عبد المنعم حبيب أستاذ مساعد الأشعة التشخيصية كلية الطب جامعة عين شمس

الدكتور/ نانسى محمد ابو شادى مدرس طب الأطفال كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس

Acknowledgement

First and foremost thanks are to **God** for helping me and supporting me during this work.

It is a pleasure to express my deepest thanks and gratitude to **Prof. Dr. Mohammed Samy El Shimi,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his great help, unlimited support, valuable supervision, guidance and continuous encouragement. It has been a great honor to work under his generous supervision.

I would like to express my profound thanks and gratitude to Assist. Prof. Dr. Lobna Abdel-Monaim Habib, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her great help and supervision on my work.

I would like to express my profound thanks and gratitude to **Dr. Nancy Mohammed Abu-Shady**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her constructive guidance and supervision, remarkable and valuable effort, great help and continuous encouragement.

Finally, I would like to thank my parents, my brother and my sister for their help and support.

Contents

Figure	Page
List of abbreviations	i
List of tables	iii
List of figures	v
Introduction.	1
Aim of the work	3
Review of literature	5
-Embryology of the urinary system	5
-Anatomy of the urinary system	12
-Congenital anomalies of the urinary tract	23
-Pediatric urinary tract infections	72
-Renal ultrasound	84
Subject and methods	89
Results	95
Discussion	109
Conclusions	119
Recommendations	110
Summary	123
References	127
Arabic summary	

List of Abbreviations

ADPKD	Autosomal dominant polycystic kidney disease
APD	Anteroposterior diameter
ARPKD	Autosomal recessive polycystic kidney disease
BRA	Bilateral renal agenesis
BW	Birth weight
CBD	Congenital bladder diverticula
CFU	Colony-forming units
СТ	Computed tomography
DIC	Direct isotope cystogram
DM	Diabetes mellitus
DMSA	Dimercaptosuccinic acid
DRNC	Direct radionuclide cystography
DTPA	99mTc-diethylenetriaminepentaacetate
GA	Gestational age
HPF	High-power field
IRC	Indirect radioisotope cystogram
IVP	Intravenous pyelogram
IVU	Intravenous urogram
IVUS	Indirect voiding urosonography
MAG-3	99mTc-mercaptoacetyltriglycine
MCDK	Multicystic dysplastic kidney
MOD	Mode of delivery
PKHD1	Polycystic Kidney and Hepatic Disease 1
PUV	Posterior urethral valve
RE	Renal ectopia
RPD	Renal pelvis dilatation
SD	Standard deviation
SFU	The Society of fetal urology
TMP-SMZ	Trimethoprim sulfamethoxazole
UPJO	Ureteropelvic junction obstruction
URA	Unilateral renal agenesis
US	Ultrasound
UTIs	Urinary tract infections
VCUG	Voiding cystourethrogram
VUR	Vesicoureteral reflux
VUS	Voiding urosonography
WBCs	White blood cells

List of Tables

Table	Title	Page
1	Ravine ultrasonographic criteria for diagnosing autosomal dominant polycystic kidney disease	44
2	Comparison of Autosomal Recessive and Autosomal Dominant Polycystic Kidney Disease	45
3	Principal causes of neonatal hydronephrosis	49
4	Society of Fetal Urology grading system of congenital hydronephrosis	50
5	International Reflux Grading classification scheme for vesicoureteral reflux	56
6	Dosage of antimicrobials used for prophylaxis in VUR	62
7	Treatment Recommendations for Vesicoureteral Reflux Diagnosed Following a Urinary Tract Infection	63
8	Advantages and disadvantages of the three methods for obtaining urine specimens from infants	77
9	The contamination rate of urine collection methods	77
10	Sensitivity and Specificity of Components of the Urinalysis	79
11	Culture criteria for diagnosis of urinary tract infection	80
12	Indications for Urinary Tract Prophylaxis	83
13	Oral Antimicrobial Agents Useful for Pediatric Urinary Tract Prophylaxis	83
14	Renal investigations other than ultrasound in children	87
15	Perinatal and clinical data of the studied neonates (n=300)	95
16	Findings on initial renal ultrasound screening	96
17	Renal pelvis dilatation laterality (sidedness)	97
18	Renal pelvis dilatation (anteroposterior diameter of renal pelvis APD	97
19	Comparison normal cases and cases with abnormal findings	99
20	Comparison between normal cases and cases with renal pelvis dilatation	100
21	Follow up of renal pelvis dilatation	100
22	Outcome of renal pelvis dilatation during period of follow up	101
23	Comparison between mild and moderate pelvis dilatation regarding resolution during period of follow up	101

24	Comparison between unilateral and bilateral pelvis	102
	dilatation regarding resolution	
25	Specific diagnosis of persistent and progressive renal	103
	pelvis dilatation	
26	The 15 cases with renal pelvis dilatation, their initial	104
	APD and their follow up and outcome	
27	The final specific diagnosis after initial renal ultrasound	105
	screening	
28	The 16 cases detected by initial postnatal ultrasound,	106
	their perinatal data and specific diagnosis	
29	Urinalysis first at time of detection of congenital	107
	anomalies and second after 2 weeks:	

List of Figures

Figure	Title	Page
1	A. Relationship of the intermediate mesoderm of the pronephric, mesonephric, and metanephric systems. B. Excretory tubules of the pronephric and mesonephric systems in a 5-week embryo	6
2	Relation of the hindgut and cloaca at the end of the fifth week. The ureteric bud penetrates the metanephric mesoderm (blastema)	8
3	Development of the renal pelvis, calyces, and collecting tubules of the metanephros. A. 6 weeks. B. At the end of the sixth week. C. 7 weeks. D. Newborn	9
4	Divisions of the cloaca into the urogenital sinus and anorectal canal. The mesonephric duct is gradually absorbed into the wall of the urogenital sinus, and the ureters enter separately. A. At the end of the fifth week. B. 7 weeks. C. 8 weeks	11
5	Figure 5: Internal structure of the kidney	13
6	Structures related to the posterior surface of the kidney	14
7	Structures related to the anterior surfaces of each kidney	14
8	Diagram of the nephron and its blood supply	16
9	The major structures in the kidney cortex and medulla (left), the position of cortical and juxtamedullary nephrons (middle) and the major blood vessels (right)	17
10	Bladder. A. Superolateral view. B. The trigone. Anterior view with the anterior part of the bladder cut away	20
11	Potter Sequence	24
12	Algorithm for evaluation of an individual with suspected unilateral renal agenesis (URA)	27
13	Crossed renal ectopia. A, Cross-fused ectopia. B, Cross-unfused ectopia. C, Unilateral crossed ectopia. D, Bilateral crossed ectopia	29
14	(a) Normal position of the kidneys with divergent axes and medial exit of the ureters. (b) Horseshoe	31

	kidney in deep lumbar position with convergent axes and ventral exit of the ureters	
15	Multicystic dysplastic kidney US	37
16	Renal pathology of autosomal recessive polycystic kidney disease in a 2-year-old child.	39
17	Autosomal recessive polycystic renal disease	39
18	Bilateral autosomal recessive polycystic renal disease US	41
19	ADPKD, the kidneys after bilateral nephrectomy in adult man	43
20	Grading of hydronephrosis by the Society for Fetal Urology (SFU) system based on renal ultrasonographic findings	
21	US transverse scan of the kidney.	51
22	Ureterocele (left) and "pseudoureterocele" (right). An ectopic ureter can occasionally elevate the floor of the bladder sufficiently to mimic a ureterocele	54
23	International Reflux Grading classification scheme for vesicoureteral reflux	56
24	Normal and abnormal configuration of the ureteral orifices.	58
25	Endoscopic correction of reflux	64
26	Four types of urachal anomalies	67
27	Normal neonatal kidney	85
28	Renal size in children for age	86
29	Renal size in children for weight and height	86
30	Protocol for management of postnatal renal pelvis dilatation	92
31	Sex distribution among the studied neonates	95
32	Mode of delivery among the studied neonates	96
33	Renal pelvis dilatation severity (number)	98
34	Renal pelvis dilatation severity (percentage)	98
35	Comparison between mild and moderate pelvis dilatation regarding resolution during period of follow up	102
36	Comparison between unilateral and bilateral pelvis dilatation regarding resolution	103

Ultrasound of congenital renal abnormalities 108
--

Introduction

Congenital urinary tract anomalies are relatively frequent and may be found in about 3% to 4% of the population (*Kim et al., 2009*). Also they account for 20 to 30 percent of all anomalies identified in the prenatal period (*Dugoff, 2002*).

Many cases of renal insufficiency in childhood are attributed to congenital anomalies of the kidneys and urinary tract (*Kim et al., 2009*). Nearly 30% of childhood cases of chronic renal failure in Japan are attributed to congenital anomalies of the kidney and urinary tract (*Tsuchiya et al., 2003*).

Congenital anomalies of the urinary tract are well known causes of urinary tract infections (UTIs) in children, as about 40% of infants and children with symptomatic UTI are reported to have vesicoureteric reflux (VUR) and 20% have other associated abnormalities in urinary tract (Ahmadzadeh and Askarpour, 2007).

UTIs have been considered an important risk factor for the development of renal insufficiency or end-stage renal disease in children *(Elder, 2007a)*. About 10%–30% of children with febrile UTIs develop renal scarring, which is thought to be a risk factor for hypertension and renal insufficiency in the longer term *(Smellie, et al., 2001)*.

Therefore, early diagnosis of congenital anomalies of the urinary tract is crucial, as potential targeted therapy (either surgical or conservative) might prevent irreversible damage of the renal parenchyma (*Halek et al.*, 2010).

Ultrasound study has a fundamental role in the investigation for detecting renal anomalies, since it is an accessible method of real-time diagnosis without the use of ionizing radiation,

١

Introduction

which is an important factor, especially in this pediatric age bracket (Kim et al., 2009).

Prenatal ultrasound for detecting urinary abnormalities has been used, but the sensitivity of the prenatal ultrasonography in detecting urinary abnormalities is low (36%) (Stolz et al., 2002). So the postnatal ultrasound examination completes early diagnosis of renal defects by uncovering the malformations which have been missed prenatally (Stolz et al., 2002).

The postnatal ultrasound screening of the urinary system is a reliable, cheap and non-invasive method. It can be performed in many local hospitals as a primary screening tool for the newborn. Through its help, many subclinical renal abnormalities will be diagnosed early (*Chein et al.*, 1999).

Aim of the Work

- (1) Determination of the incidence of congenital abnormalities of the kidney and urinary tract in apparently healthy newborn infants detected by postnatal renal ultrasound screening.
- (2) Detection of the accuracy of prenatal ultrasound screening in excluding abnormalities of the kidney and urinary tract in the studied group.
- (3) Detection of the presence of UTI in those with congenital kidney and urinary tract anomalies detected by our postnatal ultrasound screening.

Aim of the Work