

Evaluation of CD 25 (IL2 Receptor Alpha) Expression in Adult Acute Lymphoblastic Leukemia Patients

Thesis

Submitted for partial fulfillment of Master Degree in Clinical Hematology

Presented by

Entesar Mabrook juadam

M.B., B.Ch Sabratha Oncology Center-Libya

Supervised by

Prof. Dr. Inas Ahmed Asfour

Professor of internal Medicine and Clinical Hematology
Faculty of Medicine - Ain Shams University

Dr. Gihan Mohamed Kamal Shams El Din

Assistant Professor of internal Medicine and Clinical Hematology
Faculty of Medicine - Ain Shams University

Dr. Rasha Magdy Mohammed Said

Lecturer of Internal Medicine and Clinical Hematology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

تقييم السي دي- ٢٥ (مستقبلات الأنترلوكين- ٢ ألفا) في اللوكيميا الليمفاوية الحادة لدى المرضى البالغين

رسالة

توطئة للحصول علي درجة الماجستير في علم أمراض الدم الإكلينيكي مقدمة من

إنتصار المبروك مولود جغدام/الطبيبة بكالوريوس الطب والجراحة العامة المعهد القومى للأورام – صبراته / ليبيا

تحت إشراف

أد/ إيناس أحمد عصفور

أستاذ الباطنة وأمراض الدم كلية الطب- جامعة عين شمس

أد/ جيهان محمد كمال شمس الدين

أستاذ مساعد الباطنة وأمراض الدم كلية الطب- جامعة عين شمس

د/ رشا مجدی محمد سعید

مدرس الباطنة وأمراض الدم كلية الطب جامعة عين شمس كلية الطب جامعة عين شمس جامعة عين شمس القاهرة ٢٠١٧

سورة البقرة الآية: ٢١

Thanks to Allah for gracious kindness in all the endeavors the author has taken up in life.

No word can express my deep appreciation and sincere gratitude to **Prof. Dr. Inas Ahmed Asfour**, Professor of internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University for her sincere supervision, encouragement, extreme patience, kindness and valuable guidance that greatly contributed to improve the quality of this research.

My deep appreciation and deep gratitude to **Dr. Gihan Mohamed Kamal Shams El Din**, Assistant Professor of internal
Medicine and Clinical Hematology, Faculty of Medicine, Ain
Shams University for her sincere supervision, guidance and
constant advices throughout the present work.

I would also like to express my appreciation and gratitude to **Dr. Rasha Magdy Mohammed Said,** Lecturer of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University, for her continous directions and meticulous revision throughout the whole work.

Last but not least, I dedicate this work to my family, whom without their support in the critical moments and the never ending encouragement and help, this work could not be completed.

Contents

Subjects	Page
• List of Abbreviations	I
List of table	II
List of Figures	V
• Introduction	1
Aim of the Work	4
Review of literature:	5
Chapter 1: Acute Lymphoblasctic Leukaemia	64
Chapter 2: Interleukin-2 (IL-2)	94
• Patients And Methods	101
• Results	145
• Discussion	155
Summary	158
Conclusion	159
References	160
Arabic Summary	

List of Abbreviations

ALL	Acute lymphoblastic leukemia
AML	Acute myeloid leukemia
ВМ	Bone marrow
CD	Cluster of differentiation
CIBMTR	Center for International Blood and Marrow Transplant Research
CML	chronic myeloid leukemia
DIC	Disseminated intravascular coagulation
EDTA	Ethylene Diamine Tetra Acetate
FDA	Food and Drug Administration
HIV	Human immunodeficiency virus
нѕст	Hematopoietic stem cell transplantation
нѕст	Hematopoietic Stem Cell Transplant
HTLV-1	Human T-cell lymphotrophic virus type 1
IFN-γ	interferon gamma
IL-2	Interleukin-2
LP	Lumbar puncture
MUD	Matched unrelated donors

&List of Abbreviations

NHL	Non Hodgkin Lymphomas
NK	natural killer cells
SCT	Stem cell transplantation
SGOT	Serum glutamate oxaloacetate transferase
SGPT	Serum glutamate pyruvate transferase
ТВІ	Total body irradiation
T-LBL	T lymphoblastic lymphoma
TLS	Tumor lysis syndrome
TNF-α	Tumor necrosis factor alpha
UCB	Umbilical cord blood

List of Table

Tab. No.	Subject	Page
Table (1)	WHO classification of ALL	15
Table (2)	Immunophenotypes of ALL	19
Table (3)	Most frequent genetic abnormalities in ALL	21
Table (4)	Clinical and laboratory risk factors for adult ALL	30
Table (5)	Early trials evaluating the efficacy of the tyrosine kinase inhibitors	49
Table (6)	The number and percentage of different sexes of ALL patients included in the study	102
Table (7)	The number and percentage of anemic manifestations associated with ALL included patients	103
Table (8)	The number and percentage of recurrent infection associated with ALL included patients	104
Table (9)	The number and percentage of feverish and non-feverish ALL included patients	105
Table (10)	The number and percentage of patients with or without active bleeding	106
Table (11)	The number and percentage of patients with or without hepatosplenomegaly	107
Table (12)	The number and percentage of patients with or without lymphadenopathy.	108
Table (13)	The number and percentage of patients with or without testicular infiltration by ultrasonography.	109
Table (14)	Cerebrospinal fluid examination by cytospan of patients included in the study.	110
Table (15)	The Cellularity of bone marrow of the included patients	111

Tab. No.	Subject	Page
Table (16)	The expression of Philadelphia chromosome in patients of the study	112
Table (17)	Results of PCR for BCR-ABLI in ALL patients	113
Table (18)	Expression of CD25 in ALL patients included in the study.	114
Table (19)	Immunophenotypic subtypes of ALL patients	115
Table (20)	Fate of ALL patients after 6 months from diagnosis	116
Table (21)	Comparison between the patients with positive and negative CD 25 regarding age and sex	117
Table (22)	Comparison between the patients with positive and negative CD 25 regarding Hb, PLT, WBCs, Uric acid and LDH	117
Table (23)	Comparison between the patients with positive and negative CD 25 regarding bone marrow examination and cytogentic studies	118
Table (24)	Comparison between the patients with positive and negative CD 25 regarding diagnosis	118
Table (25)	Comparison between the patients with positive and negative CD 25 regarding follow up	119
Table (26)	Correlation between CD25 and the age of the included patients revealed non-significant correlation (p value > 0. 05)	120
Table (27)	Correlation between CD 25 and the sex of the included patients revealed non-significant correlation (p value > 0. 05)	121
Table (28)	Correlation between CD 25 and anemic manifestations of the included patients revealed non-significant correlation (p value > 0. 05).	122

Tab. No.	Subject	Page
Table (29)	Correlation between CD25 and recurrent infection revealed non-significant correlation (p value > 0.05)	123
Table (30)	Correlation between CD25 and fever revealed non-significant correlation (p value > 0.05)	124
Table (31)	Correlation between CD 25 and bleeding revealed non-significant correlation (p value > 0.05).	125
Table (32)	Correlation between CD 25 and Hepatosplenomegaly of the included patients revealed non-significant correlation (p value > 0.05).	126
Table (33)	Correlation between CD 25 and Lymphadenopathy by computed tomography of the included patients revealed non-significant correlation (p value > 0.05)	127
Table (34)	Correlation between CD 25 and Testicular infiltration by Ultrasonogrpahy revealed non-significant correlation (p value > 0.05)	128
Table (35)	Correlation between cluster of differentiation 25 and Cellularity of the bone marrow revealed non-significant correlation (p value > 0.05)	129
Table (36)	Correlation between CD25 and blast cells percentage of the included patients revealed non-significant correlation (p value > 0. 05).	130
Table (37)	Correlation between CD 25 and Fluorescent in situ hybridization for Philadelphia chromosome revealed highly significant positive correlation (p value <0.001)	131
Table (38)	Correlation between CD 25 and Polymerase chain reaction for BCR-ABLI revealed highly significant positive correlation (p value <0.001)	133
Table (39)	Correlation between CD 25 and white blood cells count (Thousand /cmm) of the included patients revealed highly-significant correlation (p value < 0.001)	134

∠List of Table

Tab. No.	Subject	Page
Table (40)	Correlation between CD25 and the hemoglobin concentration (g/dl) of the included patients revealed non-significant correlation (p value > 0.05)	135
Table (41)	Correlation between CD25 and the platelets count (Thousand /cmm) of the included patients revealed non-significant correlation (p value > 0.05)	136
Table (42)	Correlation between CD25 and uric acid level (mg/dL) of the included patients revealed non-significant correlation (p value > 0.05)	137
Table (43)	Correlation between CD25 and Lactate dehydrogenase enzyme activity (IU/L) of the included patients revealed significant correlation (p value < 0.05)	138
Table (44)	Correlation between CD 25 and immunophenotyping revealed non-significant correlation (p value >0.05)	139
Table (45)	Correlation between CD 25 and follow up of the included patients revealed significant correlation (p value < 0.05)	140
Table (46)	shows Kaplan–Meier estimator of the correlation between CD25 and overall survival of the included patients	141
Table (47)	shows Kaplan–Meier estimator of the correlation between CD25 and DFS of the included patients	142
Table (48)	Immunophenotypic pattern of ALL patients	143
Table (49)	The number of patients according to Immunophenotypic subtypes of ALL	144

List of Figures

	<i>J 0</i>	
Fig. No.	Subject	Page
Fig. (1)	Age-specific incidence rates for acute lymphoblastic leukemia by observation period. Data based on Surveillance, Epidemiology, and End Results (SEER) Program Cancer Statistics Review	6
Fig. (2)	The morphology of ALL/LBL in smears and paraffin-embedded tissue sections. (A, B) ALL L1. (C–D) ALL L2. (E, F) Morphologic findings in a case of precursor B-ALL with hypodiploidy, resembling a high-grade, mature B-cell lymphoma (A, C, E, Wright-Giemsa stain) (B, D, F, hematoxylin-eosin; original magnification 60x oil immersion)	14
Fig. (3)	Estimated Frequency of Specific Genotypes of ALL in Adults. Data were modified from Pui and Evans to include recently described T-cell genotypes. The genetic lesions that are exclusively seen in cases of T-cell–lineage leukemias are indicated in purple. All other genetic subtypes are either exclusively or primarily seen in cases of B-cell–lineage ALL	22
Fig. (4)	Shows EFS in childhood ALL dependent on MRD level	33
Fig. (5)	Proposed model of multisubunit structure of the IL-2R. Two IL-2-binding proteins, p55 or IL-2Ru and p75 or IL-PRP, hind to different epitopes of the IL-2 molecule. The associated molecules, p22, p35, p75 (nonIL-2 binding), p95-105, Class I MHC, ICAM-1, and a putative tyrosine kinase, are represented in an arbitrary position relative to the two IL-2 binding chains. with modifications, from B. J. Brandhuher, T. Boone, W. C. Kenney, and D. (IL-2 structure indicated by the entire clear area is reproduced by permission, B. McKay. The capital letters in the IL-2 figure define the different helical segments.	68
Fig. (6)	shows the number and percentage of different sexes of ALL patients included in the study	102

∠List of Figures

Fig. No.	Subject	Page
	shows the number and percentage of anemic	103
Fig. (7)	manifestations associated with ALL included	
	patients	104
Fig. (8)	shows the number and percentage of recurrent infection associated with ALL included patients	104
Fig. (9)	shows the number and percentage of feverish and non-feverish ALL included patients	105
E' (10)	shows the number and percentage of patients with	106
Fig. (10)	or without active bleeding	
Fig. (11)	shows the number and percentage of patients with	107
	or without hepatosplenomegaly	165
Fig. (12)	shows the number and percentage of patients with	108
E'. (10)	or without lymphadenopathy shows the number and percentage of patients with	100
Fig. (13)	or without testicular infiltration by ultrasonography	109
Fig. (14)	shows Cerebrospinal fluid examination by	110
115. (17)	cytospan of patients included in the study	
Fig. (15)	cellularity of bone marrow of the included patients	111
Fig. (16)	shows the expression of Philadelphia chromosome	112
	in patients of the study	
Fig. (17)	results of PCR for BCR-ABLI in ALL patients	113
Fig. (18)	shows Expression of CD25 in ALL patients	114
	included in the study	
Fig. (19)	shows immunophenotypic subtypes of ALL	115
Fig. (20)	Shows fate of All patients after 6 months from	116
Fig. (20)	Shows fate of All patients after 6 months from diagnosis	110
Fig. (21)	Correlation between CD25 and the age of the	120
9 ()	included patients	
Fig. (22)	Correlation between CD 25 and the sex of the	121
	included patients	
Fig. (23)	Correlation between CD25 and anemic	122
T: (2.1)	manifestations of the included patients	100
Fig. (24)	Correlation between CD25 and recurrent infection	123

∠List of Figures

Fig. No.	Subject	Page
Fig. (25)	Correlation between CD 25 and fever	124
Fig. (26)	Correlation between cluster of differentiation 25 and bleeding	125
Fig. (27)	Correlation between CD 25 and Hepatosplenomegaly of the included patients	126
Fig. (28)	Correlation between CD25 and Lymphadenopathy by computed tomography of the included patients	127
Fig. (29)	Correlation between CD 25 and Testicular infiltration by Ultrasonogrpahy	128
Fig. (30)	Correlation between CD25 and Cellularity of the bone marrow	129
Fig. (31)	Correlation between CD25 and blast cells percentage of the included patients	130
Fig. (32)	Correlation between CD25 and Fluorescent in situ hybridization for Philadelphia chromosome	131
Fig. (33)	ROC curve between FISH and CD 25	132
Fig. (34)	Correlation between CD 25 and Polymerase chain reaction for BCR-ABLI.	133
Fig. (35)	Correlation between CD25 and white blood cells count (Thousand /cmm) of the included patients	134
Fig. (36)	Correlation between CD25 and the hemoglobin concentration (g/dl) of the included patients	135
Fig. (37)	Correlation between CD25and the platelets count (Thousand /cmm) of the included patients	136
Fig. (38)	Correlation between CD25and uric acid level (mg/dL) of the included patients	137
Fig. (39)	Correlation between CD25 and Lactate dehydrogenase enzyme activity (IU/L) of the included patients	138

∠List of Figures

Fig. No.	Subject	Page
Fig. (40)	Correlation between CD 25 and immunophenotyping	139
Fig. (41)	Correlation between CD 25 and follow up of the included patients	140
Fig. (42)	shows Kaplan–Meier estimator of the correlation between CD25 and overall survival of the included patients	141
Fig. (43)	shows Kaplan–Meier estimator of the correlation between CD25 and DFS of the included patients.	142