

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

أُ شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% مئوية ورطوبة نسبية من ٢٠-٠٤% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعاوطية العاوطية @ ASUNET

بالرسالة صفحات لم

بكة المعلومات الجامعية ASUNET

Spectrophotometric determination of some pharmaceutical drugs

Submitted by

Ahmed Fathi Farghali Hagag

(B.Sc. Degree, Major chemistry, Cairo University 2004)

Tor

The Partial Fulfillment of Degree of Master (M.Sc.)

In

Analytical Chemistry

То

Chemistry Department

Faculty of Science

Cairo University

(2009)

2 1/1. В

APROVAL SHEET FOR SUBMISSION

Title of [M.Sc.] Thesis: Spectrophotometric determination of some pharmaceutical drugs.

Name of candidate: Ahmed Fathi Farghali Hagag

This thesis has been approved for submission by the supervisors:

1- Prof. Dr. GEHAD GENIDY MOHAMED

Signature:

2- Dr. MOAMEN SALAH EL-DEAN REFAT Signature: Moumen Salah Refit

Prof.Dr. Mohamed M. Shoukry

Chairman of Chemistry Department.

Faculty of Science-Cairo University.

ABSTRACT

*Name: Ahmed Fathi Farghali Hagag

Title of Thesis: Spectrophotometric determination of some pharmaceutical drugs.

Degree: (M.Sc.) Unpublished Master of Science Thesis, Faculty of Science-Cairo University, 2009.

This work has been carried out to investigate the:

- 1- Spectrophotometric microdetermination of albendazole (ALB), allopurinol (APN) and sildenafil citrate (SILC) via charge-transfer formation. This includes the utility of some π-acceptors such as , 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 3,6-dichloro-2,5-dihydroxy-p-benzoquinone (p-CLA) for estimation of ALB, APN and SILC drugs (act as è-donors).
- 2- These reactions are applied for determination of ALB, APN and SILC drugs in their pharmaceutical preparations coming from different companies.
- 3- Elucidation of the chemical structure of the solid CT complexes formed via reaction between drugs under study and π-acceptors, using elemental analysis (C, H, N), I.R., ¹HNMR and mass spectrometry.

Keywords: Albendazole, allopurinol, sildenafil citrate, DDQ, p-CLA, Spectrophotometry, Charge transfer complexes.

Supervisors: Chad Got, Houne State for

Prof. Dr. Mohamed M. Shoukry

Chairman of Chemistry Department.

Faculty of Science-Cairo University.

NOTE

Beside the work carried out in this thesis, the candidate had attended and successfully passed a final examination of M.Sc. courses (2006) in non organic chemistry covering the following topics:

- 1- Mechanism of inorganic reactions.
- 2- Advanced analytical chemistry.
- 3- Chelatimetry.
- 4- Statistical thermodynamics.
- 5- Quantum chemistry.
- 6- Molecular structure.
- 7- Solar energy.
- 8- X- rays thermal analysis.
- 9- Adsorption chemistry.
- 10 -Molten salts and Metallurgy.
- 11- Voltammetry.
- 12- Nuclear chemistry.
- 13- Group theory.
- 14- Electrochemistry.
- 15- Electro Kinetic phenomena.
- 16- Catalysis.
- 17- Advanced inorganic chemistry.
- 18- Physical polymer.
- 19- Statistical.
- 20- German language.

Prof. Dr. Mohamed M. Shoukry

Chairman of Chemistry Department.

Faculty of Science-Cairo University.

Acknowledgements

It's difficult to overstate my thanks to,

Prof. Dr. Gehad G. Mohamed

Professor of Inorganic and Analytical Chemistry, Chemistry Department,

Faculty of Science, Cairo University

With his enthusiasm, his inspiration, and his great efforts to explain things clearly and simply. Throughout my thesis, he provided encouragement, sound advice, and teaching, and lots of good ideas.

I would like also to thank

Dr. Moamen Salah El-Dean Refat

Assistant Professor of Inorganic Chemistry, Faculty of Science, Port Said
University

For his support, continuous encouragement and participation in explaining the results of this work.

Also I would like to thank

Dr. Eman Yossri Zaki, Lecturer of analytical chemistry, Cairo University, for her continuous support and powerful efforts for finishing this thesis.

Ahmed Farghali

CONTENTS

Subject	Page
ACKNOWLEDGEMENT	
AIM OF PRESENT WORK	1
CHAPTER I: LITERATURE	
I.1. Introduction	2
I.2. Literature survey on Albendazole	2
I.2.1. Mode of action	4
I.2.2. Side effects	5
I.2.3. Methods of analysis	6
I.2.3.1. Chromatographic methods	6
I.2.3.2. Electrometric methods	9
I.2.3.3. Spectrophotometric methods	10
I.3. Literature survey on Allopurinol	11
I.3.1. Mechanism of action	12
I.3.2. Uses	12
I.3.3. Methods of analysis	14
I.3.3.1. Chromatographic methods	14
I.3.3.2. Electrometric methods	15
I.3.3.3. Spectrophotometric methods	16
I.4. Literature survey on sildenafil citrate	16
I.4.1. Mechanism of action	17
I.4.2. Side effects	18
I.4.3. Uses	19
I.4.4. Chemical synthesis	19
I.4.5. Methods of analysis	20
I.4.5.1. Chromatographic methods of analysis	20
I.4.5.2. Electrometric methods	21
I.4.5.3. Spectrophotometric methods	22

I.5. Charge-Transfer Complex Formation in Drug Analysis	23
I.5.1. Charge Transfer Complexes	23
I.5.2. Type of donors:	27
I.5.2.1. π -Donors:	27
I.5.2.2. n- <i>Donors</i> :	28
I.5.2.3. σ –Donors	28
I.5.3. Types of acceptors:	28
I.5.3.1. π –Acceptors	28
I.5.3.2. Vacant orbital acceptors	29
I.5.3.3. Ketoid π –acceptors	30
I.5.3.4. Halogenoid σ –acceptors	30
I.5.4. Identification and structural analysis	32
I.5.5. Examples of CT complexes	33
I.5.5.1. CT complex formation using DDQ reagent	33
I.5.5.2. CT complex formation using p-CLA reagent	33
CHAPTER II: EXPERIMENTAL	39
II.1. Materials	39
II.2. Solutions	39
II.3. Equipments	40
II.4. Procedures	41
II.4.1 Parameters affecting spectrophotometric determination of	41
albendazole (ALB), allopurinol (APN) and sildenafil citrate	:
(SILC) via charge transfer complexation reaction with DDQ	,
and p-chloranilic acid (p-CLA) reagents	
4.1.1. Selection of the suitable wavelength	41
4.1.2. Effect of time and temperature	41
4.1.3. Effect of DDQ and p-CLA concentrations	42
4.1.4. Effect of organic solvents	42
4.1.5. Stoichimetric ratio of the CT-complexes applying:	42
(i) The continuous variation method	42
(ii) The molar ratio method	43

4.1.6. Spectrophotometric determination of albendazole,	43
allopurinol and sildenafil citrate with DDQ and p-CLA	
reagents	
(i) Validity of Beer's law	43
(ii) Day – by – day measurements	43
4.1.7. Spectrophotometric determination of albendazole,	43
allopurinol and sildenafil citrate in some pharmaceutical	
preparations	
II.4.2. Synthesis of the charge transfer complexes	44
CHAPTER III: RESULTS AND DISCUSSION	45
III.1. Spectrophotometric determination of albendazole,	45
allopurinol and sildenafil citrate via charge transfer	
complex formation	
III.1.1. Absorption spectra .	46
III.1.2. Effect of solvents	49
III.1.3. Effect of reagents concentration	55
III.1.4. Effect of time	57
III.1.5. Effect of temperature	59
III.1.6. Stoichiometry of the CT complexes	62
III.1.7. Spectrophotometric determination of albendazole,	66
allopurinol and sildenafil citrate using DDQ and p-CLA	
reagents:	
III.1.7.1. Validity of Beer's law	66
III.1.7.2. Between-Day determination of albendazole,	74
allopurinol and sildenafil citrate	
III.1.7.3. Spectrophotometric microdetermination of ALB,	. 75
APN and SILC drugs in different pharmaceutical	
preparations	
III.2. Charge-transfer complexes of albendazole, allopurinol and	84
sildenafil citrate with DDQ and p-CLA as reagents in the	,
solid state	

III.2.1. Compositions and solubility of the ALB, APN and SILC	
CT-complexes	
III.2.2. Infrared spectral studies	86
III.2.2.1. Infrared spectra of ALB-DDQ and ALB-p-CLA CT-complexes	86
III.2.2.2. Infrared spectra of APN-DDQ and APN-p-CLA CT-complexes	92
III.2.2.3. Infrared spectra of SILC-DDQ and SILC-p-CLA CT-complexes	97
III.2.3. ¹ H NMR spectra of ALB, APN and SILC CT-complexes	102
III.2.4. Mass spectra of ALB, ALB-DDQ, ALB-p-CLA, APN,	110
APN-DDQ, APN-p-CLA, SILC, SILC-DDQ and SILC-p-CLA compounds	
Summary	117
References	121
Arabic summary	

List of Figures

Figure No.		Page No.
Figure (1)	Structure of albendazole.	2
Figure (2)	Chemical structure of albendazole (1), albendazole	5
	sulphoxide (2), albendazole sulphone (3) and	
	albendazole 2-aminosulphone (4).	
Figure (3)	Structure of allopurinol.	11
Figure (4)	Allopurinol is a structural isomer of hypoxanthine.	13
Figure (5)	Diagram showing the inhibitory effect of allopurinol and	13
	oxypurinol for the formation of uric acid.	
Figure (6)	Conversion of allopurinol to oxypurinol by XO.	14
Figure (7)	Structure of sildenafil citrate.	17
Figure (8)	Structure of UK-103,320.	21
Figure (9)	Structure of p-CLA reagent	33
Figure (10)	Absorption spectra of DDQ in acetonitrile and its charge	47
	transfer complexes of ALB and SILC drugs.	
Figure (11)	Absorption spectra of DDQ in acetonitrile and its charge	48
	transfer complex of APN drug.	,
Figure (12)	Absorption spectra of p-CLA in acetonitrile and its	48
	charge transfer complexes with ALB and SILC drugs.	
Figure (13)	Absorption spectra of p-CLA in methanol and its charge	49
	transfer complex with APN drug.	
Figure (14)	Effect of organic solvents on the absorption spectra of	50
	ALB-DDQ CT complex.	
Figure (15)	Effect of organic solvents on the absorption spectra of	50
	APN-DDQ CT complex.	
Figure (16)	Effect of organic solvents on the absorption spectra of	51
	SILC-DDQ CT complex.	
Figure (17)	Effect of organic solvents on the absorption spectra of	51
	ALB, APN and SILC-DDQ CT complex.	