

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

A PHYTOCHEMICAL INVESTIGATION OF SOME PLANTS BELONGING TO FAMILY FABACEAE AND FAMILY APOCYNACEAE

A Thesis

Presented to

Faculty of Pharmacy, Alexandria University

In Partial fulfillment of the Requirements for the degree

Of

Doctor of Philosophy

In

PHARMACEUTICAL SCIENCES
PHARMACOGNOSY

By

HALA HELMY AHMED ABDEL-HAMID ZAATOUT

M. Pharm. Sci. (Pharmacognosy)
Alexandria University 2002

Department of Pharmacognosy
Faculty of Pharmacy
Alexandria University
Egypt

2009

Advisors' Committee:

Prof. Dr. Sawsan E. El-Masry

Emeritus Professor of Pharmacognosy Faculty of Pharmacy Alexandria University

Dr. Hala M. Hammoda

Assistant Professor of Pharmacognosy Faculty of Pharmacy Alexandria University

A PHYTOCHEMICAL INVESTIGATION OF SOME PLANTS BELONGING TO FAMILY FABACEAE AND FAMILY APOCYNACEAE.

Presented by

HALA HELMY AHMED ABDEL-HAMID ZAATOUT

For the degree of

Doctor of Philosophy

In

PHARMACOGNOSY

Examiners' Committee:

Prof. Dr. Sawsan E. El-Masry

Emeritus Professor of Pharmacognosy Faculty of Pharmacy Alexandria University

Prof. Dr. Nabil Ahmed Abdel-Salam

Emeritus Professor of Pharmacognosy Faculty of Pharmacy Alexandria University

Prof. Dr. Abdel-Monem Mohamed Ateya

Emeritus Professor of Pharmacognosy Faculty of Pharmacy Zagazig University **Approved**

s. El- Mass

Ahlalami

Date: 16 /12/2009

Advisors' Committee:

Prof. Dr. Sawsan E. El-Masry

Emeritus Professor of Pharmacognosy Faculty of Pharmacy Alexandria University

Dr. Hala M. Hammoda

Assistant Professor of Pharmacognosy Faculty of Pharmacy Alexandria University 5. El. Mass

Hale

ACKNOWLEDGEMENTS

First of all, I would like to express my greatest gratitude to my supervisor, Prof. Sawsan E. El-Masry for suggesting the point, her insightful advice, guidance, and full support during my PhD study. Her preciseness on research provides an excellent example for me. I also deeply appreciate Dr. Hala M. Hammoda for her guidance and kindness.

I would like to express my great thanks to Prof. Maged S. Abd Al-Kader for his support and expert guidance. I am grateful to Professor Masouda E. Amer for helpful discussions and support.

My thanks are due to the Late Prof. Nabil El-Hadidi, Department of Botany, Faculty of Science, Cairo University, and Prof. Rafik EL-Gharib, Department of Botany, Faculty of Science, Alexandria University, for their assistance in plant samples identification.

I am thankful to Dr. Amal H. Aly for her help in performing mass spectral analyses of some compounds. I also want to acknowledge Dr. Mohamed Radwan for helping with NMR and HRESI-MS analyses of compounds I-IV.

I should also thank College of Pharmacy-King Saud University and National Center for Natural Product Research-University of Mississippi.

Many thanks to my colleagues and friends especially Dr. Hattem Mekky and Dr. Amr El-Hawiet for their help in literature collection, Dr. Eman Shawky and Dr. Hoda Fathy Sherif for their continuous help.

I also thank other technical staff for their enthusiastic help.

This work was supported in part by Alexandria University and Supreme Council of Universities, Egypt and I wish to thank Faculty of Pharmacy and Alexandria University for offering me the lab and facilities for my study.

Finally, I express my gratefulness and thank to my parents, my sisters, my kids, and my husband, for their selfless love; without their support, I could not achieve my goal. I want to thank all my relatives and friends who share whatever happiness and sadness with me in my life.

CONTENTS

	ACKNOWLEDGEMENTS	i.
	LIST OF TABLES	iv
	LIST OF FIGURES	vi
	LIST OF SCHEMES	ix
	ABBREVIATIONS	Χ.
I.	INTRODUCTION	1
	1. Genus Erythrina	1
	1.1 Traditional uses of some Erythrina species	1
	1.2 Evidence based biological activities of the Erythrina plants and	2
	extracts	
	1.3 Flavonoids of the genus Erythrina. An update	3
	1.3.1 Physiological activities of Erythrina flavonoids	3
	1.3.2 Chemistry of Erythrina flavonoids	3
	1.3.3 Biological activities and SAR of Erythrina flavonoids	22
	1.3.3.1 Biological activities	22
	1.3.3.2 SAR of <i>Erythrina</i> flavonoids	24
	1.3.3.2.1 Groups essential for antioxidant and radical	24
	scavenging activity	
	1.3.3.2.2 Groups essential for protein tyrosine phosphatase	24
	1B activity	
	1.3.3.2.3 Groups essential for antimicrobial and	25
	antiplasmodium activities	
	1.3.3.2.4. Groups essential for HIV-1 protease inhibitory	25
	activity	
	1.3.3.2.5. Groups essential for cytotoxic activity	25
	1.3.3.2.6 Groups essential for estrogenic activity	25
	2-Genus Nerium	26
	2.1 Description	26
	2.2 Toxicity of Nerium oleander	26
	2.3 Traditional uses of Nerium oleander	26
	2.4 Main constituents of Nerium oleander	27
	2.5 Evidence based biological activities of Nerium oleander	27
	•	
II.	AIM OF THE WORK	28
III.	MATERIALS, METHODS AND EQUIPMENTS	29
IV.	RESULTS	
	PART I	
	Phytochemical investigation of Erythrina caffra Thumb. and Erythrina	
	lysistemon Hutch., family Fabaceae	
	CHAPTER 1	
	Investigation of the alcohol extract of Erythrina caffra Thumb. flowers	38
	CHAPTER 2	
	Characterization of compounds I-IV	
	General characters of compounds I – IV	41
	Characterization of compound I	42
	Characterization of compound II	49

	Characterization of compounds III and IV	55
	CHAPTER 3	
	Investigation of the chloroform and the alcohol extracts of <i>Erythrina caffra</i> Thumb. stem bark	66
	CHAPTER 4	
	Characterization of compounds EC-2-EC-7, EC-A1 and EC-A2	
	Characterization of compound EC-2	70
	Characterization of compounds EC-3 and EC-6	74
	Characterization of compounds EC-4, EC-5 and EC-7	82
	Characterization of compounds EC-A1 and EC-A2	104
	CHAPTER 5	101
	Investigation of the methylene chloride extract of <i>Erythrina lysistemon</i> Hutch. stem bark	117
	CHAPTER 6	
	Characterization of compound E-8	119
	PART II	
	Phytochemical investigation of <i>Nerium oleander L.</i> , family Apocynaceae CHAPTER 1	
	Investigation of the alcohol extract of Nerium oleander L. fruits	126
	CHAPTER 2	120
	Characterization of compounds N1-N4	
	Characterization of compound N1	130
	Characterization of compounds N2 and N3	138
	Characterization of compound N4	147
	•	17/
	PART III	
	Biological activities of some fractions and the isolated flavonoids	
	A- Preliminary cytotoxic bioassay for <i>Erythrina caffra</i> flowers extract and fractions using brine shrimp lethality test	151
	B- Antimicrobial, antiprotozoal and cytotoxic activities of the isolated flavones from <i>Erythrina caffra</i> flowers	154
	C- Antimicrobial activity of the isolated isoflavones from Erythrina caffra and Erythrina lysistemon stem barks	155
7 •	GENERAL SUMMARY AND CONCLUSION	157
I. II.	REFERENCES	164

LIST OF TABLES

Table		Page
1.	Flavones from the genus Erythrina	4
2.	Flavonols from the genus Erythrina	5 5
3.	Flavanones from the genus Erythrina	
4.	Chalcones and chalcanols from the genus Erythrina	9
5.	Isoflavones from the genus Erythrina	10
6.	Isoflavanones from the genus Erythrina	13
7.	Isoflavanols from the genus Erythrina	15
8.	Isoflavans from the genus Erythrina	15
9.	Isoflav-3-enes from the genus Erythrina	15
10.	Pterocarpans from the genus Erythrina	16
11.	6a-Hydroxypterocarpans and pterocarpone from the genus Erythrina	18
12.	Pterocarpenes (Dehydro pterocarpans) from the genus Erythrina	19
13.	Aryl benzofurans from the genus Erythrina	19
14.	Coumestans from the genus Erythrina	20
15.	Miscellaneous from the genus Erythrina	21
16.	Antibacterial activities of some potent Erythrina flavonoids (MIC, μ g/ml)	23
17.	Systems for TLC	30
18.	Fractionation of the ethyl acetate fraction of <i>Erythrina caffra</i> flowers	38
19.	Fractionation of the butanol fraction of Erythrina caffra flowers	39
20.	Physical characters and TLC behavior of compounds I- IV	41
21.	UV spectral data [λ_{max} , nm] of compound I	42
22.	¹ H-NMR, ¹³ C-NMR data (δ ppm) and some significant long range H-C correlations of compound I	43
23.	UV spectral data [λ_{max} , nm] of compound II	49
24.	¹ H-NMR and ¹³ C-NMR data (δ ppm) compound II	50
25.	UV spectral data [λ_{max} , nm] of compound III	55
26.	UV spectral data [λ_{max} , nm] of compound IV	56
27.	¹ H-NMR and ¹³ C-NMR spectral data (δ ppm) compounds III and IV	57
28.	Fractionation of the chloroform extract of <i>Erythrina caffra</i> bark	"
29.	Physical characters and TLC behavior of compound EC-2	66 70
30.	¹ H-NMR and ¹³ C-NMR spectral data (δ ppm) of compound EC-2	
31.	Physical characters and TLC behavior of compounds EC-3 and EC-6	70 74
32.	¹ H-NMR and ¹³ C-NMR spectral data (δ ppm) of compounds EC-3	74 74
34.	and EC-6	/4
33.	Physical characters and TLC behavior of compounds EC-4, EC-5	82
55.	and EC-7	02
34.	UV spectral data [λ_{max} , nm] of compounds EC-4, EC-5 and EC-7	82
35.	¹ H-NMR, ¹³ C-NMR data (δ ppm) and some significant long range	85
JU.	H-C correlations of compound EC-4	05
36.	¹ H-NMR, ¹³ C-NMR data (δ ppm) and some significant long range	90
- 0.	H-C correlations of compound EC-7	70
37.	¹ H-NMR, ¹³ C-NMR data (δ ppm) and some significant long range	96
	H-C correlations of compound EC-5	70