PRODUCTION OF SOME NATURAL COLORS FROM FOOD WASTES AND THEIR APPLICATION IN SOME FOOD PRODUCTS

OM-HASHEM AHMED AMIN ALI

B. Sc. Agric., Food Science and Technology, Ain Shams Univ., 2004

A thesis submitted in partial fulfillment
Of
The requirements for the degree of

MASTER OF SCIENCE in Agricultural Sciences (Food Science and Technology)

> Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

PRODUCTION OF SOME NATURAL COLORS FROM FOOD WASTES AND THEIR APPLICATION IN SOME FOOD PRODUCTS

By OM-HASHEM AHMED AMIN ALI

B. Sc. Agric., Food Science and Technology, Ain Shams Univ., 2004

This thesis approved by:	
Dr. Salah Eldin, H. Abo Raya	•••••
Prof. Emeritus of Food Science and Tec	chnology, Food Science
Department, Faculty of Agriculture, Car	ro University.
Dr. Ahmed, Y. Gibriel	
Prof. Emeritus of Food Science and Tec	chnology, Food Science
Department, Faculty of Agriculture, Air	Shams University.
Dr. Nessrien, M.N. Yasin	
Prof. of Food Science and Technology,	Food Science Department,
Faculty of Agriculture, Ain Shams Univ	versity.
Date of examination:11 / 1 / 2017	

PRODUCTION OF SOME NATURAL COLORS FROM FOOD WASTES AND THEIR APPLICATION IN SOME FOOD PRODUCTS

OM-HASHEM AHMED AMIN ALI

B. Sc. Agric., Food Science and Technology, Ain Shams Univ., 2004

Under the supervision of:

Dr. Hanan M. A. Al-Sayed

Prof. of food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University.(principal supervisor)

Dr. Nessrien, M. N. Yasin

Prof. of food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University.

Dr. Effat, A.A. Afifi

Researcher Prof. of Biochemistry Food Hygiene Department, National Nutrition Institute.

ABSTRACT

Om-Hashem Ahmed Amin Ali: Production of some Natural Colors from Food Wastes and Their Application in some Food Products. Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University 2017.

The present research was carried out to produce some natural food colors from food wastes such as; anthocyanins (red color) from red onion peels (Allium cepa), carotenoids (yellow color) from mandarin peels (Citrus reticulate) and chlorophylls (green color) from carrot leaves (Daucus carota L.), to enhance the appearance of food products and reduce the use of synthetic colors; that harmful to consumers on the long time. The results showed that acidified ethanol and methanol (0.01% Hcl) were the greatest efficient in extracting red onion peel anthocyanins (red color) at low pH (≤ 3.0) followed by distilled water and acidified distilled water(0.01% Hcl), while the greatest efficient solvents in extracting mandarin peels carotenoids (yellow color) were methanol and ethanol at pH 7.0. On the other hand, methanol and ethanol were the greatest efficient solvent systems to extract carrot leaves chlorophylls (green color) at pH 6.0. Natural extracted carotenoids from mandarin peels were the greatest stabilities at different temperatures (40, 60, 80 and 100°C) for long times up to 120min followed by extracted chlorophylls from carrot leaves, while extracted anthocyanins from red onion peels the lowest stabilities on the same conditions of temperatures and times. Hard candy manufactured by 0.25% of natural red color extracted (anthocyanins) by acidified ethanol and methanol (0.01% Hcl) recorded higher scores of color and overall acceptability compared with synthetic color samples. On the other hand, 0.2, 0.25 and 0.3% level of natural yellow color extracted (carotenoids) from mandarin peels by methanol and ethanol recorded high score of color and overall acceptability compared with synthetic color samples. For instant, hard candy samples manufactured by natural green color (chlorophylls) by ethanol and methanol at 2.5 and 3.0% levels, respectively recorded higher score of color compared with synthetic color samples. Glazing jelly manufactured by natural red color extracted from red onion peels at 0.25 and 0.3% levels recorded higher scores of color and overall acceptability, respectively compared with synthetic color samples. While added natural yellow color extracted from mandarin peels at 2.0% level recorded high score of color, but added 1.0 and 1.5% levels of natural yellow color recorded higher score of overall acceptability compared with synthetic color samples. On the other hand, added of natural green color extracted from carrot leaves byethanol and methanol at 1.5 and 2.0% levels, respectively recorded higher scores of color andoverall acceptability values, compared with synthetic color samples.

Key words: Food wastes, Natural colors, Artificial colors, Jelly, Hard candy, Confectionery products, Thermal stability, pH, Onion wastes, Citrus wastes, Carrot leaves waste, Anthocyanins, Carotenoids, Chlorophylls.

ACKNOWLEDGEMENT

All praises due to Allah, who me with kind professor and colleagues, and gave me the support to finish this thesis.

I wish to extend my deepest appreciation and science gratitude to **Prof. Dr. Hanan M. A. Al-Sayed**, Professor of Food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for the kind attention and great help provided for the accomplishment of this work and for his efforts, supervising the research, writing the manuscript and encouraging me through this work. It is difficult to express in words my deep respect to her.

Deep thanks and gratefulness will not be enough to **Prof. Dr.**Nessrien, M. N. Yasin, Professor of Food Science and Technology,
Food Science Department, Faculty of Agriculture, Ain Shams
University, for supervising this work, plentiful advice and endless
efforts provided for me to complete this work.

Deep thanks to **Prof Dr. Effat, A.A. Afifi**, Professor of Biochemistry food health Department, National Nutrition Institute, for her true efforts throughout the lab work and provided for me to complete this work.

Also, I would like to extend my thanks to all the stuff members of Food Science Department, Faculty of Agriculture, Ain Shams University. Thanks will not be enough to my family for their continuous help and since support.

LIST OF CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	XI
1. INTRODUCTION	1
2. REVIEW OF LITRATURE	5
2.1. Food processing wastes	5
2.1.1 Anthocyanins	10
2.1.1.1. Sources of anthocyanins	11
2.1.1.2. Extraction of anthocyanins	12
2.1.1.3. Stabilization of anthocyanins	14
2.2.1.4. Application of anthocyanins in food	17
2.1.2. Carotenoids	19
2.1.2.1. Sources of carotenoids	21
2.1.2.2. Extraction of carotenoids	23
2.1.2.3. Stabilization of carotenoids	25
2.1.2.4.Application of carotenoids in food	27
2.1.3. Chlorophylls	28
2.1.3.1. Sources of chlorophylls	30
2.1.3.2. Extraction of chlorophylls	31
2.1.3.3. Stabilization of chlorophylls	33
2.1.3.4. Application of chlorophylls infood	35
3. MATERIALS AND METHODS	36
3.1. MATERIALS	36
3.2.METHODS	36
3.2.1. Preparation of samples	36
3.2.2. Extraction of anthocyanins from red onion peels	36
3.2.2.1. Determination of total anthocyanins	37
3.2.3 Extraction of carotenoids from mandarin neels	38

	Page
3.2.3.1. Determination of total carotenoids	38
3.2.4. Extraction of chlorophylls from carrot leaves	39
3.2.4.1. Determination of total chlorophylls	39
3.2.5. Some properties of extracted natural colors from	41
selected wastes.	
3.2.5.1. Effect of pH	41
3.2.5.2. Effect of temperatures	41
3.2.5.3. Thermal stability	41
3.2.6. Technological methods	42
3.2.6.1. Hard candy Processing	42
3.2.6.2. Glazing jelly processing	43
3.2.7. Sensory evaluation	44
3.2.8. Statistical analysis	44
4. RESULTS AND DISCUSSION	45
4.1. Anthocyanins	45
4.1.1. Determination of extracted anthocyanins from red	45
onion peels.	
4.1.2. Some properties of extracted anthocyanins from red	48
onion peels.	
4.1.2.1. Effect of pH.	48
4.1.2.2. Effect of temperature.	52
4.1.2.3. Thermal stability.	56
4.1.3. Applications of anthocyanins in some food products.	66
4.1.3.1. Hard candy.	66
4.1.3.2. Glazing jelly.	71
4.2. Carotenoids	75
4.2.1. Determination of extracted carotenoids from	75
mandarin peels.	
4.2.2. Some properties of extracted carotenoids from	77
mandarin peels.	

	Page
4.2.2.1. Effect of pH.	77
4.2.2.2. Effect of temperature.	80
4.2.2.3. Thermal stability.	84
4.2.3. Applications of carotenoids in some food products.	90
4.2.3.1. Hard candy.	90
4.2.3.2. Glazing jelly.	92
4.3. Chlorophylls	96
4.3.1. Determination of extracted chlorophylls (a and b)	96
from carrot leaves.	
4.3.2. Some properties of extracted chlorophylls (a and b)	98
from carrot leaves	
4.3.2.1. Effect of pH.	98
4.3.2.2. Effect of temperature.	102
4.3.2.3. Thermal stability.	106
4.3.3. Applications of chlorophylls (a and b) in some food	112
products.	
4.3.3.1. Hard candy	112
4.3.3.2. Glazing jelly	115
5. SUMMARY AND CONCLUSION	119
6. REFERENCES	126
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
No.		
1.	Formulation of control hard candy.	42
2.	Formulation of control glazing jelly.	43
3.	Concentration of extracted anthocyanins	47
	(mg/100g) from red onion peels by different	
	solvents.	
4.	Effect of pH values on retention and degradation	50
	rates(%) of extracted anthocyanins from red onion	
	peels by selected solvents.	
5.	Effect of temperature on extracted anthocyanins	54
	from red onion peels by selected solvents at	
	different temperatures for 30 min.	
6.	Thermal stability of extracted anthocyanins from	58
	red onion peels by acidified methanol (0.01% Hcl)	
	at different temperatures and time.	
7.	Thermal stability of extracted anthocyanins from	60
	red onion peels by acidified ethanol (0.01%Hcl) at	
	different temperatures and time.	
8.	Thermal stability of extracted anthocyanins from	62
	red onion peels by acidified distilled water	
	(0.01%Hcl) at different temperatures and time.	
9.	Thermal stability of extracted anthocyanins from	64
	red onion peels by distilled water atdifferent	
	temperatures and time.	
10.	Sensory evaluations of hard candy prepared with	69
	different levels of extracted anthocyanins from red	
	onion peels by selected solvents.	
11.	Sensory evaluations of glazing jelly prepared with	73
	different levels of extracted anthocyanins from red	

Table No.		Page
110.	onion peels by selected solvents.	
12.	Concentration of extracted carotenoids (mg/100g) from mandarin peels by different solvents.	76
13.	Effect of pH values on retention and degradation rates (%) of extracted carotenoids from mandarin peels by selected solvents.	78
14.	Effect of temperature on extracted carotenoids from mandarin peels by selected solvents at different temperatures for 30 min.	82
15.	Thermal stability of extracted carotenoids from mandarin peels by methanol at different temperatures and time.	86
16	Thermal stability of extracted carotenoids from mandarin peels by ethanol at different temperatures and time.	88
17.	Sensory evaluations of hard candy prepared with different levels of extracted carotenoids from	91
18.	mandarin peels by selected solvents. Sensory evaluations of glazing jelly prepared with different levels of extracted carotenoids from mandarin peels by selected solvents.	95
19	mandarin peels by selected solvents. Concentration of extracted chlorophylls (a and b) (mg/100g) from carrot leaves by different solvents.	97
20	Effect of pH values on retention and degradation rates (%) of extracted chlorophylls (a and b) from	101
21	carrot leaves by selected solvents. Effect of temperature on extracted chlorophylls(a and b) from carrot leaves by selected solvents at different temperatures for 30min.	104

Table		Page
No.		
22	Thermal stability of extracted chlorophylls (a and	108
	b) from carrot leaves by ethanol at different	
	temperatures and time.	
23	Thermal stability of extracted chlorophylls (a and	110
	b) from carrot leaves by methanol at different	
	temperatures and time.	
24	Sensory evaluations of hard candy prepared with	114
	different levels of extracted chlorophylls (a and b)	
	from carrot leaves by selected solvents.	
25	Sensory evaluations of glazing jelly prepared	117
	withdifferent levels of extracted chlorophylls (a	
	and b) from carrot leaves by selected solvents.	

LIST OF FIGURES

Fig. No.		Page
1.	Concentration of extracted anthocyanins (mg/100g)	47
	from red onion peels by different solvents.	
2.	The retention rates (%) of extracted anthocyanins	51
	from red onion peel by selected solvents at various	
	pH values.	
3.	The degradation rates (%) of extracted anthocyanins	51
	from red onion peel by selected solvents at various	
	pH values.	
4.	Effect of different temperatures on extracted	55
	anthocyanins from red onion peel by selected	
	solvents for 30 min.	
5.	Thermal stability of extracted anthocyanins from	59
	red onion peels by acidified methanol (0.01%Hcl) at	
	different temperatures and time.	
6.	Thermal stability of extracted anthocyanins from	61
	red onion peels by acidified ethanol (0.01%Hcl) at	
	different temperatures and time.	
7.	Thermal stability of extracted anthocyanins from	63
	red onion peels by acidified distilled water	
0	(0.01%Hcl) at different temperatures and time.	
8.	Thermal stability of extracted anthocyanins from	65
	red onion peels by distilled water at different	
0	temperatures and time.	70
9.	Hard candy prepared with different levels of	70
	extracted anthocyanins from red onion peel by	
10	selected solvents.	74
10.	Glazing jelly prepared with different levels of extracted anthocyanins from red onion peel by	74
	selected solvents.	
	science surveits.	

Fig. No.		Page
11.	Concentration of extracted carotenoids (mg/100g)	76
	from mandarin peels by different solvents.	
12.	The retentionrates (%) of extracted carotenoids from	79
	mandarin peel by selected solvents at various pH	
	values.	
13.	The degradation rates (%) of extracted carotenoids	79
	from mandarin peel by selected solvents at various	
	pH values.	
14.	Effect of different temperatures on extracted	83
	carotenoids from mandarin peels by selected	
	solvents for 30 min.	
15.	Thermal stability of extracted carotenoids from	87
	mandarin peels by methanol at different	
	temperatures and time.	
16.	Thermal stability of extracted carotenoids from	89
	mandarin peels by ethanol at different temperatures	
	and time.	
17.	Hard candy prepared with different levels of	92
	extracted carotenoids from mandarin peel by	
	selected solvents.	
18.	Glazing jelly prepared with different levels of	96
	extracted carotenoids from mandarin peel by	
	selected solvents.	
19.	Concentration of extracted chlorophylls (a and b)	98
	(mg/100g) from carrot leaves by different solvents.	
20.	The retention rates (%) of extracted chlorophylls (a	101
	and b) from carrot leaves by selected solvents at	
	various pH values.	
21.	The degradation rates (%) of extracted chlorophylls	102

Fig. No.	,	Page
	(a and b) from carrot leaves by selected solvents at	
	various pH values.	
22.	Effect of different temperatures onextracted	105
	chlorophylls (a and b) from carrot leaves by selected	
	solvents for 30 min.	
23.	Thermal stability of extracted chlorophylls (a and b)	109
	by ethanol from carrot leaves at different	
	temperatures and time.	
24.	Thermal stability of extracted chlorophylls (a and b)	111
	by methanol from carrot leaves at different	
	temperatures and time.	
25.	Hard candy prepared with different levels of	115
	extracted chlorophylls (a and b) from carrot leaves	
	by selected solvents.	
26.	Glazing jelly prepared with different levels of	118
	extracted chlorophylls (a and b) from carrot leaves	
	by selected solvents.	