

EFFECT OF CORRECTION OF CHRONIC METABOLIC ACIDOSIS BY ORAL SODIUM BICARBONATE THERAPY ON NUTRITIONAL STATUS IN HEMODIALYSIS PATIENTS

Thesis

Submitted for Partial Fulfillment of Master Degree in Nephrology

By
Wael Ramadan El-Metwally
Diploma Of Internal Medicine
Zagazig University

Under Supervision of

Prof. Dr. GAMAL ELSAYED MADI

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. AHMED SHABAN SERAGELDEEN

Lecturer of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2015

LIST OF CONTENTS

	. •		<i>p</i> .
List of Abbrevia	ati	ons	Ii
List of Tables	•••		Iiv
List of Figures .	•••		iv
Introduction	•••		1
Aim of the worl	Κ.		4
Review of Liter	<u>atı</u>	<u>are</u>	
Chapter One	:	METABOLIC ACIDOSIS PATHOPHYSIOLOGY AND CONSEQUENCES	5
Chapter Two	:	NUTRITIONALSTATUSOFHEMODIALYSIS PATIENTS	27
Chapter Three	:	ASSESSMENT OF NUTRITIONAL STATUS IN DIALYSIS PATIENTS	51
Chapter Four	:	CKD-MINERAL BONE DISORDER	71
Materials and n	ne	thods	89
Results	•••		95
Discussion	• • •	•••••••••••••••••••••••••••••••••••••••	123
Summary	•••	•••••••••••••••••••••••••••••••••••••••	140
Conclusion	•••		143
References	•••	•••••	144

List of Abbreviations

AE	Anion exchanger
ANG	Angiotensin
ANK	Ankylosis locus
BCG	Bromocresolgreen
BIA	Bioelectric impedance analysis
BMI	Body mass index
BUN	Blood urea nitrogen
CA II	Carbonic anhydrase II
CA IV	Carbonic anhydrase IV
CAPD	Continuous ambulatory peritoneal dialysis
CD	Collecting ducts
CHF	Congestive heart failure
CKD	Chronic kidney disease
CKD-MBD	Chronic kidney disease- mineral bone disorder
CVC	Calcifying vascular cells
CVD	Cardiovascular disease
DEXA	Dual-energy x-ray absorptiometry
DOQI	Dialysis Outcome Quality Initiative
eGFR	Estimated glomerular filtration rate
ENPP1	Ecto-nucleotide pyrophosphatase
	phosphodiesterase-1
ESA	Erythropoiesis Stimulating Agents
ESRD	End-stage renal disease
FFMI	Fat free mass index

List of Abbreviations

FGF23	Fibroblast growth factor-23
FMI	Fat mass index
GFR	Glomerular filtration rate
GH/IGF-I	Growth hormone/ Insulin-like growth factor 1
Gla	γ-carboxyglutamate
HD	Hemodialysis
ID	interdialytic
IGF-1	Insulin-like growth factor 1
IL	Interleukin
iPTH	Intact parathyroid hormone
ISRNM	International Society of Renal Nutrition and
	Metabolism
KDIGO	Kidney Disease Improving Global Outcomes
MA	Metabolic acidosis
MAMC	Mid-arm muscle circumference
MGP	Matrix Gla protein
NHANES	National Health and Nutrition Examination
	Surveys
NHE3	Na+/H+ exchanger 3
nPCR	Normalized protein catabolic rate
nPNA	Protein equivalent of nitrogen appearance
OPG	Osteoprotegerin
PCR	Protein catabolic rate
PCT	Proximal convoluted tubules
PD	Peritoneal dialysis
PEW	Protein-energy wasting
PI3 kinase	Phosphatidylinositol 3-kinase
PPAR	Peroxisome proliferator-activated receptor
PTH	Parathyroid hormone

List of Abbreviations

RCTs	Randomized controlled trials
REE	Resting energy expenditure
ROD	Renal osteodystrophy
RTA	Renal tubular acidosis
SD	Standard deviation
SGA	Subjective global assessment
SHPT	Secondary hyperparathyroidism
spKt/V	Single pool Kt/V
SPSS	statistical package for special science
TNF	Tumor necrosis factor
TSF	Triceps skin fold
UGR	Urea generation rate
UP	Uremic pruritis
USRDS	US Renal Data System
VC	Vascular calcification

LIST OF TABLES

LIST OF TABLES

Table 1.	:	Causes of PEW in CKD	
		Patients	30
Table 2.	:	Typical Comorbidities in CKD Patients that Contribute to	
		PEW	43
Table 3.	:	Criteria for clinical diagnosis of protein-energy wasting	
		(PEW)	52
Table 4.	:	Anthropometry in 30 hemodialysis patients and normal	
		controls	59
Table 5.	:	Serum protein concentrations in normal subjects and	
		patients undergoing maintenance	
		hemodialysis	60
Table 6.	:	Reasons for altered vitamin D metabolism in CKD	76
Table 7.	:	Distribution of studied cases according to their	
		age	95
Table 8.	:	Distribution of studied cases according to their sex	96
Table 9.	:	Distribution of studied cases according to the duration of	
		dialysis	97
Table 10.	:	Comparison between group I and II as regard the cause of	
		ESRD	98
Table 11.	:	Comparison between group I and II as regard history of	
		drug intake	99
Table 12.	:	Distribution of studied cases in group I & II at the start of	
		the study	101
Table 13.	:	Distribution of studied cases in group I & II at end of the	
		study	103
Table 14.	:	Distribution of studied cases in group I at the start and the	
		end of the study	105
Table 15.	:	Distribution of studied cases in group II at the start and the	
		end of the study	107
Table 16.	:	Correlations between demographic variables and nutritional	
		parameters	119
Table 17.	:	Correlations between HCO3 and other parameters	121
Table 18.	:	Correlations between Kt/V and other parameters	122

LIST OF FIGURES

LIST OF FIGURES

Figure 1.	:	Role of PCT in HCO3 reabsorption	8
Figure 2.	:	Adverse effects of a, acute metabolic acidosis and b, chronic	
		metabolic acidosis	13
Figure 3.	:	Risk of mortality among hemodialysis patients according to	
		serum albumin during maintenance dialysis	63
Figure 4.	:	The pathogenesis of CKD-MBD	74
Figure 5.	:	The factors involved in the pathogenesis of secondary	
		hyperparathyroidism	81
Figure 6.	:	Pathogenesis of VC in CKD patients	85
Figure 7.	:	Distribution of studied cases according to their sex	97
Figure 8.	:	ESRD in studied cases	99
Figure 9.	:	History of drug intake in studied cases	100
Figure 10.	:	Comparison of mean serum albumin between both groups	
		at 0 and 6 months	109
Figure 11.	:	Comparison of mean serum potassium between both groups	
		at 0 and 6 months	110
Figure 12.	:	Comparison of mean serum calcium between both groups at	
		0 and 6 months	111
Figure 13.	:	Comparison of mean serum phosphorus between both	
		groups at 0 and 6 months	112
Figure 14.	:	Comparison of mean iPTH between both groups at 0 and 6	
		months	113
Figure 15.	:	Comparison of mean Kt/V between both groups at 0 and 6	
		months	114
Figure 16.	:	Comparison of mean nPCR between both groups at 0 and 6	
		months	115

LIST OF FIGURES

Figure 17.	:	Comparison of mean TSF between both groups at 0 and 6	
		months	116
Figure 18.	:	Comparison of mean MAMC between both groups at 0 and	
		6 months	117
Figure 19.	:	Comparison of mean serum HCO3 between both groups at 0	
		and 6 months	118

v

Introduction

INTRODUCTION

Metabolic acidosis (MA) slowly develops during natural evolution of renal impairment towards end-stage renal disease (ESRD). Although metabolic acidosis is worldwide recognized as a uremic toxin, its implication in chronic kidney disease (CKD) pathophysiology mechanism is still unknown. Even if it is unanimously accepted that acidosis fully metabolic is not compensated hemodialysis (HD) therapy starts, K/DOQI Guidelines do not impose a specific therapy scheme for metabolic acidosis in CKD subjects, only suggest the need of treating acidosis when serum bicarbonate levels are below 22 mEg/L. Thus, there is evidence to support low serum bicarbonate level is associated with progression of kidney disease independent of baseline eGFR and other clinical, demographic, socioeconomic factors. (Shah et al., 2009). In addition, oral bicarbonate administration in HD individuals must be performed with caution due to fluid retention. (de Brito-**Ashurst et al., 2009).**

Acidosis represents a continual threat to the metabolic integrity of the dialysis patient, and can adversely affect both protein and bone metabolism. Prolonged metabolic acidosis acts as a catabolic stimulus in experimental uraemic animals, promoting the release of amino acids from skeletal muscle, which can be reversed by alkali administration. Short term studies in uraemic patients have similarly shown that correction of acidosis can reduce muscle protein degradation and reduce urea generation rates (UGR). Improvement in long-term acid base balance in hemodialysis patients has been shown to result in an improvement in bone morphology, and a reduction in hyperparathyroidism (Lu KC et al., 1995).

In a comprehensive Cochrane Database of Systematic Reviews published recently, authors were able to find only three randomized, controlled trials (RCTs) of adult dialysis patients (n 117). There were insufficient data for most outcomes to perform a meta-analysis. In all three trials, correction of acidosis was achieved variably but was associated with significant improvement in nutritional parameters [body weight, nitrogen balance studies, isotope

INTRODUCTION

protein turnover studies, triceps skinfold thickness and subjective global assessment (SGA)] apart from heterogeneity in serum albumin response. The conclusion of that report stated that data on benefits and risks of correcting MA is very limited with no RCTs of pre-ESRD patients and only three small RCTs of dialysis patients. (Roderick et al., 2007).

Aim of the Work

AIM OF THE WORK

To address the role of oral sodium bicarbonate therapy on nutritional parameters of prevalent hemodialysis patients.

Chapter One