

Faculty of Education Mathematics Department

STATISTICAL ANALYSIS FOR ACCELERATED LIFE TESTS BASED ON DIFFERENT CENSORING SCHEMES

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Doctor of Philosophy Degree in Teacher's Preparation in Science

(Statistics)

Submitted to:

Department of Mathematics, Faculty of Education, Ain Shams University

 $\mathbf{B}\mathbf{y}$

Abd El-Raheem Mohamed Abd El-Raheem Mohamed

Assistant Lecturer at,
Mathematics Department, Faculty of Education, Ain Shams University

Supervised by

Prof. Dr. M. M. Mohie El-Din

Professor of Mathematical Statistics Faculty of Science Al-Azhar University Prof. Dr. S. E. Abu-Youssef

Professor of Mathematical Statistics Faculty of Science Al-Azhar University

Dr. Nahed S. A. Ali

Lecturer of Mathematical Statistics Faculty of Education Ain Shams University

(2016)

Faculty of Education Mathematics Department

<u>Candidate</u>: Abd El-Raheem Mohamed Abd El-Raheem Mohamed

Thesis Title:STATISTICAL ANALYSIS FOR ACCELERATED LIFE TESTS BASED ON DIFFERENT CENSORING SCHEMES

 $\underline{\underline{\mathbf{Degree}}} : \mathbf{Doctor}$ of Philosophy for Teacher's Preparation in Science

(Statistics)

Supervisors:

No.	Name	Profession	Signature
1.	Prof. Dr. M. M. Mohie El-Din	Professor of Mathematical Statistics, Mathematics Department, Faculty of Science, Al-Azhar University.	
2.	Prof. Dr. S. E. Abu-Youssef	Professor of Mathematical Statistics, Mathematics Department, Faculty of Science, Al-Azhar University.	
3.	Dr. Nahed S. A. Ali	Lecturer of Mathematical Statistics, Mathematics Department, Faculty of Education, Ain Shams University.	

Acknowledgements

First of all, gratitude and thanks to gracious **Allah** who always helps and guides me. I would like to thank **the prophet Mohamed** "peace be upon him" who urges us to seek knowledge and who is the teacher of mankind. I would like also to thank the supervision committee who are:

Prof. Dr. Mostafa Mohamed Mohie El-Din, Professor of Mathematical Statistics, Faculty of Science, Al-Azhar University, for his support, encouragement and continuing guidance during preparing this thesis. He discussed with me many research problems in the seminar of Statistics which was held in Faculty of Science, Al-Azhar University.

Prof. Dr. Shaban Ebrahim Abu-Youssef, Professor of Mathematical Statistics, Faculty of Science, Al-Azhar University, who helped me at the first step in this study through his suggestions for the research problems. He offered me much of his precious time and provided me with his wisdom and knowledge through many discussions we had.

Dr. Nahed Said Abd El-Latef Ali, Lecturer of Mathematical Statistics, Faculty of Education, Ain Shams University, who provided me with valuable instructions, guidance and continuous encouragement. She did her best for the success of this work through seminars, many discussions, precious comments and valuable reviews.

Thanks also are due to **Dr. Osman Mohamed Frege**, Head of Mathematics Department, Faculty of Education, Ain Shams University, and all staff members for providing me with all facilities required to the success of this dissertation.

I extend also my heartfelt thanks to scientific research fellows at the school of Mathematical Statistics headed by **Prof. Dr. Mostafa Mohamed Mohie El-Din**.

I extend also my heartfelt thanks to **Prof. Dr. Galal Mahrous**, Professor of Applied Mathematics, Faculty of Education, Ain Shams University, for his support and continuous encouragement.

Finally, I am appreciative to my kind parents, my wife, my son and my beloved family for their support, patience, sacrifice and continuous encouragement. I would like also to thank my sister, my brothers and all my friends.

Abd El-Raheem Mohamed

Contents

C	onter	\mathbf{nts}		ĺ	
Li	List of Abbreviations and Symbols				
Li	List of Figures List of Tables				
Li					
\mathbf{S} ι	umm	ary		xii	
1	Intr	oduct	ion	1	
	1.1	Basic	concepts and definitions $\dots \dots \dots \dots \dots$		
		1.1.1	Geometric process	. 3	
		1.1.2	Akaike information criterion	. 3	
	1.2	Lifetin	me distributions	. 4	
		1.2.1	Exponential distribution	. 4	
		1.2.2	Lindley distribution	. 4	
		1.2.3	Weibull distribution	. 5	
		1.2.4	Generalized exponential distribution	. 6	
		1.2.5	Extension of the exponential distribution	. 6	
		1.2.6	Power generalized Weibull distribution	. 7	
	1.3	Accele	erated life test	. 8	
		1.3.1	Constant-stress	. 9	
		1.3.2	Step-stress	. 9	
		1.3.3	Progressive-stress	. 10	
	1.4	Statis	tical models for acceleration	. 11	
		1.4.1	Life-stress relationships	. 12	
		1.4.2	Step-stress accelerated models	. 13	
		1.4.3	Progressive-stress model	. 15	

CONTENTS

	1.5	Lifetime data	16
		1.5.1 Complete data	16
		1.5.2 Censored data	16
	1.6	Maximum likelihood estimation	19
	1.7	Bayesian analysis	19
		1.7.1 Prior distribution	20
		1.7.2 Loss functions	21
		1.7.3 Computational methods	22
	1.8	Goodness of fit test	26
		1.8.1 Kolmogorov-Smirnov test	26
		1.8.2 Modified Kolmogrov-Smirnov test for progressive type-	
		II censored data	27
	1.9	Literature review	28
2	\mathbf{Esti}	imation in Constant-Stress Accelerated Life Tests for the	
	\mathbf{Ext}	ension of the Exponential Distribution under Progressive	
	Cen	nsoring	31
	2.1	Test procedures and its assumptions	32
		2.1.1 Basic assumptions	32
	2.2	Likelihood function and maximum likelihood estimation	36
	2.3	Bayes inference	38
		2.3.1 Bayesian inference using MCMC method	39
	2.4	Interval estimation	41
		2.4.1 Normal approximation confidence interval	41
		2.4.2 Bootstrap confidence interval	42
		2.4.3 Credible confidence interval	42
	2.5	Application	43
		2.5.1 Example	43
		2.5.2 Comparison between extension of the exponential dis-	
		tribution, Weibull distribution, and generalized expo-	
		nential distribution	46
	2.6	Simulation studies	48
	2.7	Conclusion	59
3	Opt	timal Plans of Constant-Stress Accelerated Life Tests for	
	_		61
	3.1	· ·	62
	3.2		63

CONTENTS

		3.2.1	Point estimation	63
		3.2.2	Interval estimation	66
	3.3	Optim	ality criteria	66
		3.3.1	D-optimality	67
		3.3.2	C-optimality	69
	3.4	Applic		72
		3.4.1	Example 1	72
		3.4.2	Comparison between Lindley distribution and expo-	
			nential distribution	75
		3.4.3	Example 2	76
		3.4.4	Comparison between Lindley and exponential distri-	
			butions	78
	3.5		rical examples	79
		3.5.1	Example 1	79
		3.5.2	Example 2	80
		3.5.3	Example 3	82
	3.6	Conclu	ısion	84
4	Infe	rence	on Step-Stress Accelerated Life Tests for the Ex-	
4			on Step-Stress Accelerated Life Tests for the Ex- Exponential Distribution under Progressive Type-	
4	tens	sion of	Exponential Distribution under Progressive Type-	85
4	tens II C	sion of Censori	Exponential Distribution under Progressive Typeng	85
4	tens	sion of Censori	Exponential Distribution under Progressive Typeng estep-stress ALT with type-II progressive censoring	85 86 86
4	tens II C	sion of Censori Simple 4.1.1	Exponential Distribution under Progressive Typeng estep-stress ALT with type-II progressive censoring. Test assumptions	86
4	tens II C 4.1	sion of Censori Simple 4.1.1 Maxin	Exponential Distribution under Progressive Typeng e step-stress ALT with type-II progressive censoring Test assumptions	86 86
4	tens II C 4.1	sion of Censori Simple 4.1.1 Maxin	Exponential Distribution under Progressive Typeng e step-stress ALT with type-II progressive censoring Test assumptions	86 86 88
4	tens II C 4.1	Sion of Censori Simple 4.1.1 Maxim Bayes 4.3.1	Exponential Distribution under Progressive Typeng e step-stress ALT with type-II progressive censoring Test assumptions	86 86 88 89
4	tens II C 4.1 4.2 4.3	Sion of Censori Simple 4.1.1 Maxim Bayes 4.3.1	Exponential Distribution under Progressive Typeng e step-stress ALT with type-II progressive censoring . Test assumptions	86 86 88 89 91
4	tens II C 4.1 4.2 4.3	Sion of Censori Simple 4.1.1 Maxim Bayes 4.3.1 Confid	Exponential Distribution under Progressive Typeng estep-stress ALT with type-II progressive censoring . Test assumptions	86 86 88 89 91
4	tens II C 4.1 4.2 4.3	Sion of Censori Simple 4.1.1 Maxin Bayes 4.3.1 Confid 4.4.1	Exponential Distribution under Progressive Typeng estep-stress ALT with type-II progressive censoring . Test assumptions	86 86 88 89 91 92
4	tens II C 4.1 4.2 4.3	Sion of Censori Simple 4.1.1 Maxim Bayes 4.3.1 Confid 4.4.1 4.4.2 4.4.3	Exponential Distribution under Progressive Typeng estep-stress ALT with type-II progressive censoring . Test assumptions	86 88 89 91 92 93
4	tens II (4.1 4.2 4.3 4.4	Sion of Censori Simple 4.1.1 Maxim Bayes 4.3.1 Confid 4.4.1 4.4.2 4.4.3	Exponential Distribution under Progressive Typeng estep-stress ALT with type-II progressive censoring . Test assumptions	86 88 89 91 92 93 93
4	tens II (4.1 4.2 4.3 4.4	Sion of Censori Simple 4.1.1 Maxim Bayes 4.3.1 Confid 4.4.1 4.4.2 4.4.3 Applie 4.5.1	Exponential Distribution under Progressive Typeng step-stress ALT with type-II progressive censoring . Test assumptions	86 86 88 91 92 93 93 94 94 96
4	tens II (4.1 4.2 4.3 4.4	Sion of Censori Simple 4.1.1 Maxim Bayes 4.3.1 Confid 4.4.1 4.4.2 4.4.3 Applic 4.5.1 Simula	Exponential Distribution under Progressive Typeng step-stress ALT with type-II progressive censoring . Test assumptions	86 86 88 89 91 92 93 93 94 94

CONTENTS

	Ger	neralized Weibull Distribution with Progressive Censor	-
	ing		109
	5.1	Step-stress PALT with type-II progressive censoring	110
	5.2	Maximum likelihood estimators	112
	5.3	Bayes inference	113
		5.3.1 Non-informative prior	114
		5.3.2 Informative prior	122
	5.4	Confidence intervals	126
		5.4.1 Approximate confidence interval	126
		5.4.2 Credible confidence interval	127
	5.5	Simulation studies	127
	5.6	Conclusion	137
	gres	ssive Type-II Censoring	140
		Extension of the Exponential Distribution under Pro	
	6.1	Progressive-stress ALT with progressive censoring	141
	6.2	Estimation via maximum likelihood method	$141 \\ 142$
	6.3	Bayesian estimation	142 144
	0.5		$144 \\ 145$
	6.4	6.3.1 MCMC approach	$145 \\ 146$
	0.4	6.4.1 Normal approximation confidence interval	146
		6.4.2 Credible confidence interval	140 147
	6.5	Application	147
	0.5		148
	6.6	r	150
	6.7	Simulation studies	$150 \\ 159$
	0.7	Conclusion	199
\mathbf{Bi}	bliog	graphy	161

List of Abbreviations and Symbols

- ALT: Accelerated life test.
- PALT: Partially accelerated life test.
- MLEs: Maximum likelihood estimates.
- ML: Maximum likelihood.
- BEs: Bayes estimates.
- PDF: Probability density function.
- CDF: Cumulative distribution function.
- HF: Hazard function.
- HRF: Hazard rate function.
- GP: Geometric process.
- CI: Confidence interval.
- IP: Informative prior.
- NIP: Non-informative prior.
- SE: Square error.
- SEL: SE loss.
- LINEX: Linear exponential.

- LINEXL: LINEX loss.
- MCMC: Markov chain Monte Carlo.
- MTTF: Mean time to failure.
- Var: Variance.
- AV: Asymptotic variance.
- K-S: Kolmogorov-Smirnov.
- AIC: Akaike information criterion.
- TRV: Tampered random variable.
- TFR: Tampered failure rate.
- \bullet *EE*: Extension of the exponential.
- WE: Weibull.
- *GE*: Generalized exponential.
- \bullet PGW: Power generalized Weibull.
- MSEs: Mean square errors.
- RABs: Relative absolute biases.
- CS: Censoring scheme.
- \mathbb{R} : Real numbers.
- $\Phi(.)$: CDF of the standard normal distribution.
- E(.): Expected value.
- U(0,1): Standard uniform distribution.
- $\mathbf{N}(.,.)$: Normal distribution.
- $<_{st}$: Less stochastically.

List of Figures

1.1	Constant-stress test	9
1.2	Step-stress test	10
1.3	Progressive-stress test	11
1.4	Cumulative exposure model for three step-stress ALT	14
	Constant-stress ALT under progressive type-II censoring Reliability function under normal operating conditions	33 46
4.1	Simple step-stress ALT under progressive type-II censoring	87
5.1	Step-stress PALT under progressive type-II censoring	111

List of Tables

2.1	The failure times in hours of transformer life testing at high voltage	44
2.2	Test statistic and the corresponding P-value of each stress	44
2.2	level of transformer life testing for EE distribution	44
2.3	MLEs and BEs along with their length of 95% CIs inside the	44
2.0	parentheses of γ , σ_0 and θ for the real data set	45
2.4	MTTF (in hours) at different voltages when $\hat{\gamma} = 0.4841$ and	40
2.1	$\hat{\sigma_0} = 0.00121 \dots \dots \dots \dots \dots \dots$	45
2.5	Test statistic and the corresponding P-value of each stress	10
	level of the transformer life testing for Weibull distribution .	47
2.6	Test statistic and the corresponding P-value of each stress	
	level of the transformer life testing for generalized exponential	
	distribution	47
2.7	MLEs, AV and AIC for the EE , WE and GE distributions .	48
2.8	The progressive censoring schemes used in the simulation studies	49
2.9	MSEs and RABs inside the parentheses for MLEs and BEs of	
	γ , σ_0 and θ with true values of parameters ($\gamma = 0.9181$, $\sigma_0 =$	
	1.0108 and $\theta = 3.2102$), values of the prior parameters ($\mu_1 =$	
	$2, \mu_2 = 2.5, \lambda_1 = 2.1783, \lambda_2 = 2.4734 \text{ and } \beta = 0.4524),$	
	the number of stress levels $(k = 4)$, and $S_0 = 50$, $S_1 = 70$,	
	$S_2 = 100, S_3 = 120 \text{ and } S_4 = 160 \dots \dots \dots \dots \dots$	51
2.10	MSEs and RABs inside the parentheses for BEs of γ , σ_0 and θ	
	with true values of the parameters ($\gamma = 0.9181, \ \sigma_0 = 1.0108$	
	and $\theta = 3.2102$), values of the prior parameters ($\mu_1 = 0$,	
	$\mu_2 = 0$, $\lambda_1 = 0$, $\lambda_2 = 0$ and $\beta = \ln \theta / (\theta - 1)$, the number	
	of stress levels $(k = 4)$, and $S_0 = 50$, $S_1 = 70$, $S_2 = 100$,	
	$S_3 = 120 \text{ and } S_4 = 160 \dots \dots \dots \dots \dots \dots \dots \dots$	54

	Lengths of 95% normal approximation (Appro), bootstrap (Boot), credible in the case of IPs (Cred (IP)) and credible in the case of NIPs (Cred (NIP)) CIs for γ , σ_0 and θ with true values ($\gamma = 0.9181$, $\sigma_0 = 1.0108$ and $\theta = 3.2102$), the number of stress levels ($k = 4$), and $S_0 = 50$, $S_1 = 70$, $S_2 = 100$, $S_3 = 120$ and $S_4 = 160$	57 58
3.1	Time (hours) to failure of 40 motors	73
3.2	K-S distances and the corresponding P-values of each stress	
0.0	level for Lindley distribution	74
3.3	Optimal constant-stress ALTs plans with complete sample for C-criterion	74
3.4	K-S distances and the corresponding P-values of each stress level for the exponential distribution	75
3.5	MLEs and AV of λ_0 and θ , and AIC for the Lindley and exponential distributions	76
3.6	The number of cycles to failure of 20 specimens made from	10
	supple platinum	77
3.7	K-S distances and the corresponding P-values of each stress	
	level of fatigue test for Lindley distribution	77
3.8	C-optimal constant-stress ALTs plans with complete sample	78
3.9	The values of K-S distances and the corresponding P-values of	70
3 10	each stress level of fatigue test for the exponential distribution MLEs, AV and AIC for the Lindley and exponential distribu-	78
3.10	tions	79
3.11	Optimal allocation proportions for a k-level constant-stress	10
	ALT under complete sample with true values $\lambda_0 = 0.01$ and	
	$\theta = 3.3 \ldots \ldots$	80
3.12	AV of MLEs and the lengths of 95% CIs of MLEs with true	
	values $\lambda_0 = 0.01$ and $\theta = 3.3 \dots \dots \dots \dots \dots$	80

3.13	Optimal allocation proportions for a k-level constant-stress	
	ALT under complete sample with true values $\lambda_0 = 0.2$ and	
	$\theta = 1.2 \dots \dots$	81
3.14	AV of MLEs and the lengths of 95% CIs of MLEs with true	
	values $\lambda_0 = 0.2$ and $\theta = 1.2$	82
3.15	The values of (Π_D^*) and (Π_C^*) for a k-level constant-stress ALT	
0.46	under complete sample with true values $\lambda_0 = 0.4$ and $\theta = 2.6$	83
3.16	AV of MLEs and the lengths of 95% CIs of MLEs with true	0.0
	values $\lambda_0 = 0.4$ and $\theta = 2.6$	83
4.1	The failure times in hours of 64 miniature light bulbs	95
4.2	The value of test statistic and the corresponding P-values of	
	each stress level for EE distribution	95
4.3	MLEs and BEs under SE (BSE) and LINEX (BLINEX) loss	
	functions along with their length of 95% CIs inside the paren-	
	theses of γ , σ_1 and σ_2	96
4.4	MSEs and RABs inside the parentheses for MLEs and BEs of	
	γ , σ_1 and σ_2 with true values ($\gamma = 0.5735$, $\sigma_1 = 0.2585$ and	
	$\sigma_2 = 0.9455$), values of the prior parameters ($\mu_1 = 3.28902$,	
	$\lambda_1 = 0.1743, \ \mu_2 = 0.6683, \ \lambda_2 = 0.3868, \ \mu_3 = 8.9451, \ \text{and}$	
	$\lambda_3 = 0.1057$), and $\tau = 7$	99
4.5	MSEs and RABs inside the parentheses for MLEs and BEs of	
	γ , σ_1 and σ_2 with true values ($\gamma = 0.5735$, $\sigma_1 = 0.2585$ and	
	$\sigma_2 = 0.9455$), values of the prior parameters ($\mu_1 = 3.28902$,	
	$\lambda_1 = 0.1743, \ \mu_2 = 0.6683, \ \lambda_2 = 0.3868, \ \mu_3 = 8.9451, \ \text{and}$	
4.0	$\lambda_3 = 0.1057$), and $\tau = 13$	102
4.6	Lengths and coverage probabilities of 95% normal approxi-	
	mation, credible and bootstrap CIs for γ , σ_1 and σ_2 with true	105
17	values ($\gamma = 0.5735$, $\sigma_1 = 0.2585$ and $\sigma_2 = 0.9455$), and $\tau = 7$	105
4.7	Lengths and coverage probabilities of 95% normal approximation, credible and bootstrap CIs for γ , σ_1 and σ_2 with true	
		106
	values ($\gamma = 0.5755$, $\theta_1 = 0.2565$ and $\theta_2 = 0.9455$), and $\tau = 15$	100
5.1	Progressive censoring schemes used in the simulation studies	128
5.2	MSEs and RABs inside the parentheses for MLEs and BEs in	
	the case of NIPs of γ , ν and β with true values of parameters	
	$(\gamma = 1.1, \ \nu = 1.7 \text{ and } \beta = 1.5), \text{ and } \tau = 0.7 \dots \dots$	130

MSEs and RABs inside the parentheses for MLEs and BEs of γ , ν and β with true values of parameters ($\gamma = 1.1$, $\nu = 1.7$ and $\beta = 1.5$), values of the prior parameters ($\mu = 0.6470$ and	
$\lambda = 1.7$), and $\tau = 0.7$	133
Lengths and coverage probabilities of 95% approximate and credible CIs in the case of NIPs and IPs for γ , ν and β	136
The lifetime data from ramp-voltage tests	148
tests	149
theses of γ , a and b for ramp-voltage tests MSEs and RABs inside the parentheses for MLEs and BEs	149
values ($\gamma=0.90108,\ a=0.4$ and $b=0.6$), values of the prior parameters ($\mu=4.0597$ and $\lambda=0.2219$), $k=2,\ \nu_1=4,$ and	153
MSEs and RABs inside the parentheses for MLEs and BEs under SEL and LINEXL functions of γ , a and b with true values ($\gamma = 0.90108$, $a = 0.4$ and $b = 0.6$), values of the prior	
$\nu_2 = 8, \ \nu_3 = 12, \ \text{and} \ \nu_4 = 16 \ \dots \dots \dots \dots \dots$	155
imation and credible CIs for γ , a and b with true values	
$\nu_2 = 16$	157
Lengths and coverage probabilities of 95% normal approximation and credible CIs for γ , a and b with true values	
$(\gamma = 0.90108, \ a = 0.4 \text{ and } b = 0.6), \ k = 4, \ \nu_1 = 4, \ \nu_2 = 8, \ \nu_3 = 12, \ \text{and} \ \nu_4 = 16 \dots \dots \dots \dots \dots \dots \dots \dots$	158
	γ,ν and β with true values of parameters $(\gamma=1.1,\nu=1.7$ and $\beta=1.5),$ values of the prior parameters $(\mu=0.6470$ and $\lambda=1.7),$ and $\tau=0.7$