

# Dietary Supplementation To Control Malnutrition in Chronic Hemodialysis Egyptian Patients

A thesis submitted for the degree of Master in Science by

## Zeinab Al Saad Eid Barakat

(B.Sc. Biochemistry, 2006)

#### **Under Supervision of**

#### Prof. Dr. Nadia Youssef Sadek Morcos

Professor of Biochemistry, Faculty of Science, Ain Shams University

#### Prof Dr. Ezzat Abdel-Rahman El Etreby

Professor of Internal medicine and Nephrology, Faculty of Medicine, Al-Azhar University

#### Dr. Maha Mostafa kamal

Lecturer of Biochemistry, Faculty of Science, Ain Shams University

Biochemistry Department
Faculty of Science
Ain Shams University
2013

## **The Department Committee Agreement**

## **DECLARATION**

This thesis has not been submitted in this or any other university

Zeinab Al Saad Eid Barakat

### **Biography**

Name: Zeinab Al Saad Eid Barakat.

**Date and place of birth:** 1/1/1985, Cairo, Egypt.

**Date of Graduation:** May, 2006

**Degree awarded:** B.Sc. of Biochemistry, 2006.

**Grade:** Very good.

**Date of Registration:** 5/2011

## Supervisors:

- (1) Prof. Dr. Nadia Y. S. Morcos
- (2) Prof. Dr. Ezzat Abdel-Rahman El Etreby
- (3) Dr. Maha Mostafa kamal

#### **ACKNOWLEDGEMENT**

My deepest gratitude and thanks to God the most merciful for guiding me through, and giving me the strength to complete this work with the way it is, and peace upon the messenger of God Mohamed.

I am deeply indebted to *Prof. Dr. Nadia Morcos*. Professor of Biochemistry, Faculty of Science, Ain Shams University, for helping me choosing the delightful subject of this work and for her endless support and sincere advice. It has been an honor and privilege to work under her generous supervision.

I would also like to express my sincere gratitude to *Prof. Dr. Ezzat El-Etreby*, Professor of Internal medicine and Nephrology, Faculty of Medicine, Al-Azhar University, for his close supervision, his patience, and continuous encouragement.

I wish to express my deepest thanks to *Dr. Maha Mostafa*, Lecturer of Biochemistry, Faculty of Science, Ain Shams University, for her guidance, valuable help, kind directions, generous support, friendly attitude.

Last but not least, I would like to thank all the staff of the Biochemistry Department, Faculty of Science, Ain Shams University and everyone who shared in the successfulness of this work by any means.

Zeinab Al Saad Eid Barakat

<u>Abstract</u> XII

#### **ABSTRACT**

Background & Aim: The majority of hemodialysis patients are hyperphosphatemic. Hyperphosphatemia in these patients can lead to renal osteodystrophy, vascular calcification, cardiovascular events, and is independently associated with mortality risk. The aim of this study is to find a suitable dietary intervention to improve hyperphosphatemia in maintenance-hemodialysis patients. These interventions should be simple, easily applied, related to Egyptian diets, and the patients could adhere to them.

Patients & Samples: Twenty one patients on maintenance-hemodialysis were selected from El Doaah and El Rayan hospitals, in Cairo. All patients were under treatment according to the dialysis unit. Twelve patients were first advised to adhere to a simple diet for 4 months, suggested by the National Nutrition Institute, Cairo, Egypt. On the 5<sup>th</sup> month, 9 patients were included, and all patients received the diet + 2 cups of green tea/day, for 4 months. Blood samples were taken at baseline and monthly from all patients. Serum phosphorous, calcium, urea and creatinine were measured together with blood hemoglobin and Ca x P was calculated. Data were analyzed using paired t-test,

<u>Abstract</u> XIII

correlation analysis, and the intra-individual variation in each patient was calculated.

Results: The phosphorous levels were significantly reduced (from 6.58 to 4.4 mg/dL), while the calcium levels were elevated (from 7.9 to 9.2 mg/dL), resulting in a decrease in Ca x P (from 51.9 to 40.9 mg²/dL²) at all intervals, showing maximum effect after adding green tea to the diets. These effects were observed in total, male, and female patients. The within-subject biological changes due to the dietary interventions revealed that none of the patients suffered from deterioration in their phosphorous or calcium levels throughout the experimental period.

Conclusion: Advising the patients on maintenance-hemodialysis to adhere to simple Egyptian diets supplemented with green tea to alleviate their hyperphosphatemia and hypocalcemia. The strong individuality observed supports the preferential use of within-subjects biological variations and the reference change values (RCVs) rather than population-based reference intervals. Further studies with larger number of patients and longer periods of follow-up are recommended.

#### **CONTENTS**

| Contents                                                | Page No. |  |
|---------------------------------------------------------|----------|--|
| Abstract                                                | Х        |  |
| 1. Introduction                                         |          |  |
| Aim of work                                             | 3        |  |
| 2. Review of Literature                                 | 4        |  |
| 2.1. Background                                         | 4        |  |
| 2.2. Renal Basic Structure and Functions                | 6        |  |
| 2.2.1. Renal basic structure                            | 6        |  |
| 2.2.2. Functions of the kidney                          | 9        |  |
| 2.2.3. The kidney and homeostasis                       | 13       |  |
| 2.2.4. The balance concept                              | 14       |  |
| 2.2.5. Urine formation                                  | 15       |  |
| 2.3. Renal Insufficiency                                | 17       |  |
| 2.4. Diagnostic Procedures and Renal Diseases           | 19       |  |
| 2.4.1. The glomeolar filtration rate (GFR)              | 19       |  |
| 2.4.2. Creatinine clearance test                        | 21       |  |
| 2.5. Renal Failure                                      | 24       |  |
| 2.5.1. Acute renal failure/Acute kidney injury          | 24       |  |
| 2.5.2. Chronic renal failure                            | 28       |  |
| 2.5.2.1. Definition of CKD                              | 29       |  |
| 2.5.2.2. CKD staging                                    | 29       |  |
| 2.5.2.3. Predicting prognosis of CKD                    | 31       |  |
| 2.6. Complication of Chronic Kidney Disease             | 32       |  |
| 2.6.1. Chronic kidney disease-associated anemia         | 32       |  |
| 2.6.2. CKD-associated mineral and bone disorders        | 34       |  |
| 2.6.3. Cardiovascular risk – Cardiorenal syndrome (CRS) | 36       |  |
| 2.6.4. Dyslipidemia                                     | 39       |  |
| 2.6.5. Oxidative stress                                 | 41       |  |
| 2.7. Medical Management of Chronic Renal Failure        | 43       |  |
| 2.7.1. Conservative therapy                             | 43       |  |
| 2.7.2. Renal replacement therapy                        | 44       |  |
| 2.7.2.1. Hemodialysis                                   | 45       |  |
| 2.7.2.2. Peritoneal dialysis                            | 49       |  |
| 2.8. Malnutrition in Patients with CKD                  |          |  |
| 2.8.1. Protein Energy Wasting (PEW)                     | 52       |  |
| 2.8.2. Phosphate control in dialysis                    | 54       |  |
| 2.8.3. Pathophysiology of secondary                     | 58       |  |
| hyperparathyroidism and hypocalcemia in chronic         |          |  |
| kidney disease                                          |          |  |

<u>Contents</u> XI

| Contents                                            |     |
|-----------------------------------------------------|-----|
| 2.9. Beneficial Effects of Green Tea                | 62  |
| 2.9.1. Green tea composition                        | 62  |
| 2.9.2. Anti-oxidative effect                        | 62  |
| 3. Subjects & Methods                               | 68  |
| 3.1. Subjects                                       | 68  |
| 3.2. Diets                                          | 68  |
| 3.3. Blood samples                                  | 74  |
| 3.4. Kits used & equipment                          | 75  |
| 3.5. Methods of analysis                            | 75  |
| 3.5.1. Determination of serum total calcium         | 75  |
| 3.5.2. Determination of serum total phosphorus      | 76  |
| 3.5.3. Determination of serum Creatinine            | 77  |
| 3.5.4. Determination of serum Urea                  | 78  |
| 3.5.5. Determination of Hemoglobin                  | 79  |
| 3.6. Statistical Analysis                           | 80  |
| 3.6.1. Paired-SampleT-Test                          | 80  |
| 3.6.2. Critical differences                         | 80  |
| 3.6.3. Correlation analysis                         | 82  |
| 4. Results                                          | 83  |
| 4.1. Paired-SampleT-Test                            | 84  |
| 4.2. Reference change values (Critical differences) | 103 |
| 4.3. Correlation analysis                           | 110 |
| 5. Discussion                                       | 114 |
| 6. Conclusion & Recommendation                      |     |
| 7. Summary                                          | 134 |
| 8. References                                       | 137 |

## LIST OF ABBREVIATIONS

| ACAT    | Acyl-coenzyme A Cholesterol Acyl Transferase     |
|---------|--------------------------------------------------|
| A/CR    | Albumin-to-Creatinine Ratio                      |
| AER     | Albumin Excretion Rate                           |
| AKI     | Acute Kidney Injury                              |
| AKIN    | Acute Kidney Injury Network                      |
| ARF     | Acute Renal Failure                              |
| AV      | Analytical Variation                             |
| α, KG   | α, ketoglutarate                                 |
| BMI     | Body Mass Index                                  |
| BUN     | Blood Urea Nitrogen                              |
| BV      | Biological Variation                             |
| CaR     | Calcium-sensing Receptor                         |
| CD      | Critical Difference                              |
| CKD     | Chronic Kidney Disease                           |
| CKD-MBD | Chronic Kidney Disease–Mineral and Bone Disorder |

| CRF                  | Chronic Renal Failure                      |
|----------------------|--------------------------------------------|
| CRS                  | Cardiorenal Syndrome                       |
|                      |                                            |
| CRS-Type4            | Chronic Renocardiac Syndrome               |
| CVD                  | Cardiovascular Disease                     |
| CVi                  | Intra-Individual Biological Variation Data |
| DM                   | Diabetes Mellitus                          |
| eGFR                 | Estimated Glomerular Filtration Rate       |
| ESRD                 | End Stage Renal Disease                    |
| FF                   | Fast Food                                  |
| FGF23                | Fibroblast Growth Factor-23                |
| GFR                  | Glomerular Filtration Rate                 |
| GH                   | Growth Hormone                             |
| GLDH                 | Glutamate Dehydrogenase                    |
| HD                   | Hemodialysis                               |
| HMG-CoA<br>reductase | 3-Hydroxy-3- Methyl Glutaryl CoA reductase |

| IID   | Harman dan sain a                                                    |
|-------|----------------------------------------------------------------------|
| HP    | Hypertension                                                         |
| НРТ   | Hyperparathyroidism                                                  |
| IR    | Insulin Resistance                                                   |
| LDL   | Low Density Lipoprotein                                              |
| LDL-C | Low Density Lipoprotein –Cholesterol                                 |
| MHD   | Maintenance Hemodialysis                                             |
| MPO   | Myeloperoxidase                                                      |
| NADH  | Nicotinamide Adenine Dinucleotide                                    |
| NKF   | National Kidney Foundation                                           |
| PD    | Peritoneal Dialysis                                                  |
| PEW   | Protein Energy Wasting                                               |
| PTH   | Parathyroid Hormone                                                  |
| RAAS  | Renin Angiotensin Aldosterone System                                 |
| RCV   | Reference Change Value                                               |
| Reg   | Regulare                                                             |
| RIFLE | Risk, Injury, Failure, Loss of function, and End stage renal disease |

| RO/NS | Reactive Oxygen/Nitrogen Species |
|-------|----------------------------------|
| ROS   | Reactive Oxygen Species          |
| SD    | Standard Deviation               |
| SDa   | Analytical Standard Deviations   |
| SDb   | Biological Standard Deviations   |
| SI    | Slice                            |
| SOD   | Superoxide Dismutase             |
| Tb    | Tablespoon                       |
| TG    | Triglycerides                    |
| VDR   | Vitamin D Receptor               |

#### LIST OF FIGURES

| Figure | Contents                                                          | Pages      |
|--------|-------------------------------------------------------------------|------------|
| No.    |                                                                   | No.        |
| 2.1    | Kidney anatomy                                                    | 7          |
| 2.2    | Renal tubules and collecting duct                                 | 8          |
| 2.3    | Functions of the kidneys                                          | 10         |
| 2.4    | Electrolytes and water recycling                                  | 10         |
| 2.5    | Acid-base balance                                                 | 11         |
| 2.6    | Renal hormones                                                    | 12         |
| 2.7    | Urine formation                                                   | 15         |
| 2.8    | RIFLE classification for AKI after modifications by the Acute     | 25         |
|        | Kidney Injury Network                                             |            |
| 2.9    | RIFLE and AKIN classification systems                             | 26         |
| 2.10   | Main Categories of Acute Renal Failure                            | 27         |
| 2.11   | Factors contributing to anemia in CKD                             | 33         |
| 2.12   | Phosphorus balance in normal physiology                           | 34         |
| 2.13   | Regulation of phosphorus balance in CKD                           | 35         |
| 2.14   | Summary of phosphate and calcium disturbances in CKD              | 36         |
| 2.15   | Schematic of CRS type 4                                           | 38         |
| 2.16   | Main pathogenetic mechanisms responsible of hyperlipidemia        | 40         |
|        | in nephrotic syndrome                                             |            |
| 2.17   | Synthesis of reactive oxygen species (ROS) in patients with       | 42         |
|        | chronic kidney disease (CKD)                                      |            |
| 2.18   | Schematic representation of solute transport across the semi-     | 47         |
|        | permeable dialysis membrane.                                      |            |
| 2.19   | Patterns of solute removal with hemodialysis                      | 48         |
| 2.20   | Etiologic factors for malnutrition in chronic kidney disease      | 51         |
| 2.21   | The conceptual model for etiology and consequences of             | 53         |
|        | protein energy wasting (PEW) in chronic kidney disease            |            |
| 2.22   | Partial list of pathological events related to phosphate toxicity | 54         |
| 2.22   | as documented in both human and animal studies                    |            |
| 2.23   | Phosphate metabolism in kidney failure and in health              | 55         |
| 2.24   | Putative mechanisms linking hyperphosphatemia and                 | 56         |
| 2.25   | cardiovascular disease                                            | <i>C</i> 1 |
| 2.25   | Pathophysiology of secondary hyperparathyroidism in chronic       | 61         |
| 2.26   | kidney disease                                                    | <i>C</i> 1 |
| 2.20   | Chemical structures of green tea catechins                        | 64         |
| 4.1    | Changes in hemoglobin levels compared to baseline for both        | 85         |
|        | diets in all patients (paired t-test)                             |            |
| 4.2    | Changes in hemoglobin (g/dL) levels throughout the                | 87         |
|        | experimental period in both genders                               | 0,         |
| 4.2    |                                                                   | 0.0        |
| 4.3    | Changes in Urea levels compared to baseline for both diets in     | 88         |
|        | all patients (paired t-test).                                     |            |
|        |                                                                   |            |
|        |                                                                   |            |