Role of Nutrition in Central Nervous System Disorders

Essay

Submitted for Partial Fulfillment of Master Degree in Neurology & Psychiatry

By

Dr. Mafakher Mohammed Farid AboArgoub *M.B.B.Ch Tripoli University*

Supervised by

Prof. Dr/ Samia Ashour Mohamad Helal

Professor of Neurology & Psychiatry
The head of neurology & Psychiatry department
Faculty of Medicine- Ain Shams University

Dr/ Lobna Mohamad Al Nabil Mortada

Assistant professor of Neurology & Psychiatry Faculty of Medicine- Ain Shams University

Dr/ Ali Soliman Ali Shalash

Assistant Professor of Neurology & Psychiatry Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2014

بسم الله الرحمن الرحيم

صدق الله العظيم

Acknowledgement

First, thanks are all due to GOD for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Samia Ashour Mohamad Helal,** Professor of Neurology & Psychiatry The head of neurology & Psychiatry department Faculty of Medicine- Ain Shams University for her great support and advice, her valuable remarks that gave me the confidence and encouragement to fulfill this work.

I would like also to express my deep and special thanks to

Dr/ Lobna Mohamad Al Nabil Mortada, Assistant

professor of Neurology & Psychiatry, Faculty of Medicine-Ain Shams University for her generous help, guidance and patience through all the stages of this work. This work could not have reached its goal without her help.

I would like also to express my sincere appreciation and gratitude to **Dr/Ali Soliman Ali Shalash**, Assistant Professor of Neurology & Psychiatry, Faculty of Medicine-Ain Shams University for his continuous directions and support throughout the whole work.

Content

Subject	Page	
 List of Abbreviation. 	II	
 List of tables and figures. 	IV	
 Introduction and Aim of the work. 	1	
• Chapter (1): Degenerative diseases of CNS	8	
 Dementia. 	8	
 Alzheimer's disease. 	10	
 Parkinson disease. 	23	
 Alcoholism. 	36	
 Amyotrophic lateral sclerosis. 	37	
• Chapter(2): Demyelinating diseases of CNS	<i>E</i> 1	
Multiple Sclerosis.	51 51	
• Chapter (3): Epilepsy.	71	
• Chapter (4): Vitamins Deficiencies Related to	90	
Neurological Disorders	90	
• Vitamin B1.	90	
• Vitamin B3.	95	
• Vitamin B6.	98	
• Vitamin B12.	99	
• Vitamin E.	105	
• Chapter (5): Cerebrovascular diseases of	108	
CNS		
• Stroke.	108	
Migraine.	119	
• Discussion.	128	
• Summary. • Recommendations		
• Recommendations.		
• References.		
 Arabic summary. 		

List of Abbreviation

AB Amyloid Beta.

AD Alzheimer Disease.

AED Anti Epileptic Drugs.

ALS Amyotrophic Lateral Sclerosis.

AMCI Amnestic Cognitive Impairment.

CA Carnosic Acid.

CHO Carbohydrate.

CNS Central Nervous System.

CoQ10 Coenzyme Q10.

CSF Cerebro - Spinal Fluid.

CT Computer Tomography.

CVA Cerebrovascular Accident.

DBS Deep Brain Stimulation.

EAE Experimental Autoimmune Encephalomyelitis.

EDSS Expanded Disability Status Scale.

EEG Electro Encephalo Gram.

EGCG Epigallocatechin Gallate.

EPIDOS Epidemiogie de l'osteoporose Study.

FAO Food Agriculture Organization of the United

Nation.

FDA Food and Drug Administration.

FTD FrontoTemporal Dementia.

GBD Global Burden of Disease.

Hcy Homocystine.

IgG Immunoglobulin G

INR International Normalization Ratio.

KD Ketogenic Diet.

LRRK2 Leucine – Rich Repeat Kinase2.

MND Motor Neuron Disease.

MOG Myelin Oligo dendrocyte Glycoproteine.

MRI Magnetic Resonance Image.

MS Multiple Sclerosis.

NAC N – Acetyl Cystine.

NHANES3 Third National Health and Nutrition

Examination Survey.

PD Parkinson Disease.

PET Positron Emission Tomography.

PINK1 PTEN – induced putative kinase1.

PRKN Parkin.

RD Registered Dietitian.

RDA Recommended Daily Allowances.

RNS Neurostimulation system.

SNCA Alpha – Synuctien.

SPECT Single Photon Emission Computer

Tomography.

TIA Temporary Ischemic Attack.

VEP Visual Evoked Potential.

WKS Wernick'e – Korsakoff Syndrome.

List of Tables

Table No.	Title				
1	Neurological disorders caused by nutrient deficiency.	3			
2	The AD stages & characters				
3	Stages & symptoms of PD	24			
4	The diagnostic criteria of PD				
5	Neuro-psychiatry symptoms of ALS				
6	The Mc Donald criteria of MS	56			
7	Management of MS				
8	Classifications of seizures				
9	Signs & symptoms of epilepsy				
10	Causes of seizures				
11	Selection of antiepileptic medications				
12	Dietary Suggestions related to phenobarbitone				
13	Dietary Suggestions related to phenytoin				
14	Factors of KD				
15	Clinical features of vitamin B1 deficiency				
16	Signs & symptoms of vitamin B3 deficiency				
17	The main criteria for diagnosing pellagra				
18	Clinical manifestation of vitamin B12 deficiency				
19	Vitamin B12deficiency therapy				
20	Signs & symptoms of vitamin E				
21	Stroke risk factors	109			
22	Primary prevention of stroke				
23	Secondary prevention of stroke	114			
24	Management of stroke	114			
25	Migraine phases				
26	Causes of migraine				
27	Diagnostic criteria of migraine				
28	Preventive treatments of migraines				

List of Figures

Figure No.	Title			
1	Brain cross section in AD VS normal brain	11		
2	Dopamine generating cells in the substantia nigra	27		
3	MS subtypes			
4	MS signs & symptoms			
5	Simple partial seizures			
6	Complex partial seizures			
7	How to diagnosed vitamin B12 deficiency	104		
8	Classification of stroke	111		

Introduction

In low income countries, inadequate amounts of food (causing conditions such as child malnutrition and retarded growth) and inadequate diversity of food (causing deficiency of vital nutrients such as vitamins, minerals or trace elements) continue to be priority health problems. Malnutrition in all its forms increases the risk of disease and early death (*FAO*, 2000).

Nearly 800 million people in the world do not have enough to eat. Malnutrition affects all age groups, but it is especially common among poor people and those with inadequate access to health education, clean water and good sanitation.

Most of the malnutrition-related neurological disorders are preventable (*FAO*, 2000).

Chronic food defiecits affect about 792 million people in the world. Malnutrition directly or indirectly affects a variety of organ systems including the central nervous system (CNS), (*FAO*, 2000).

A number of nutritional conditions are included in the Global Burden of Disease (GBD) study, such as protein—

energy malnutrition, vitamin A deficiency, and iron deficiency anaemia (FAO, 2000).

Over 15% of the disability adjusted life years (DALYs) lost globally are estimated to be from malnutrition (*FAO*, 2000).

The major dietary nutrients needed by living organisms, especially human beings, can be grouped into macronutrients and micronutrients. The macronutrients are the energy-yielding nutrients-proteins, carbohydrates and fat, and micronutrients are the vitamins and minerals. The macronutrients have a double function, being both "fi rewood" and "building blocks" for the body, whereas the micronutrients are special building items, mostly for enzymes to function well. The term "malnutrition" is used for both macronutrient and micronutrient deficiencies. Macronutrient and micronutrient problems often occur together, so that the results in humans are often confounded and impossible to separate out (*FAO*, 2000).

Table (1) outlines which of the nutrients may contribute to neurological disorders if not provided in sufficient amounts, together with their recommended daily allowances (RDA) for an adult (*WHO*, 2006)

Table 1. Neurological disorders caused by nutrient deficiency (WHO, 2001):

Nutrient	RDA	Neurological disorder
Macronutrient	2200	In children it make long term mental
total energy	Kcal	deficient.
Micronutrient:		
Vitamins		
Vitamin	1.1 mg	Beri-beri, polyneuropathy,
B1Thiamine		Wernicke's encephalopathy
Vitamin B3 Niacin	15 mg	Pellagra including dementia and
	NE	depression.
Vitamin B6	1.6 mg	Polyneuropathy
Pyridoxine		
Vitamin B9	180 μg	Neural tube defects
Folate		(myelomeningocele) of the fetus,
		cognitive dysfunction in children
		and elderly.
Vitamin B12	2.0 μg	Progressive myelopathy with
Cobalamine		sensory disturbances in the legs.
Micronutrient:		
Minerals		
Iodine	150 μg	Iodine defi ciency disorders.
Iron	15mg	Delayed mental development in
		children.
Zinc	12mg	Delayed motor development in
		children, depression.
Selenium	55mg	Adverse mood states.

The nervous system develops in utero and during infancy and childhood, and in these periods it is vulnerable to macronutrient deficiencies. As a rule, general

malnutrition among adults does not cause specific neurological damage, whereas among children it does (*Onis*, 1993).

The percentage of wasted children in low income countries is 8%. This presents a disturbing picture of malnutrition among children under 5 years of age in underprivileged populations. These children should be an important target group for any kind of nutritional intervention to be undertaken in these countries (*Onis*, 1993).

Stunting is also widespread among children in low income countries. The global average for stunting among children in low income countries is 32%. Increasing evidence shows that stunting is associated with poor developmental achievement in young children and poor school achievement or intelligence levels in older children (*Onis*, 1993).

Apart from the risk of developing coronary heart disease, diabetes and high blood pressure later in life owing to malnutrition in early life, there is now accumulating evidence of long-term adverse effects on the intellectual capacity of previously malnourished children. It is methodologically difficult, however, to differentiate the

biological effects of general malnutrition and those of the deprived environment on a child's cognitive abilities. It is also methodologically difficult to differentiate the effect of general malnutrition from the effect of Micronutrient deficiencies, such as iodine deficiency during pregnancy and iron deficiency childhood, which also cause mental and physical impairments (*Grantham-McGregor & Ani, 2003*).

Malnourished children lack energy, so they become less curious and playful and communicate less with the people around them, which impairs their physical mental and cognitive development (*Grantham-McGregor & Baker-Henningham*, 2005).

Two recent reviews highlight the evidence of general malnutrition per se causing long-term neurological deficits. An increasing number of studies consistently show that stunting at a young age leads to a long-term deficit in cognitive development and school achievement up to adolescence. Such studies include a wide range of tests including IQ, reading, arithmetic, reasoning, vocabulary, verbal analogies, visual-spatial working memory, simple and complex auditory working memory, sustained attention and information processing (*Grantham-McGregor & Ani*, 2003).

🕏 Introduction 🗷

Episodes in young childhood of acute malnutrition (wasting) also seem to lead to similar impairments. The studies also indicate that the period in utero and up to two years of age represents a particularly vulnerable time for general malnutrition. In addition to food supplementation, it has been nicely demonstrated that stimulation of the child has long-term beneficial effects on later performance (*Grantham-McGregor & Baker-Henningham*, 2005).

The Aim of Work

The aim of the work is to discuss the role of nutrition in developing, protecting, and management of central nervous system disorders.