

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Planning of the Electric Power Distribution Systems Securing Maximum Reliability at Constraint Budget

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering

Prepared by:

Eng. Shazly Nasser Fahmy Ahmed

B.Sc. in Electrical Power Engineering Department of Electrical Power and Machines El-Shorouk Academy

Under Supervision of:

Prof. Dr. Ahmed Rizk Abul'Wafa

Faculty of Engineering -Ain Shams University

Assoc. Prof. Dr. Aboul'Fotouh A. Mohamed High Institute for Engineering, El-Shorouk Academy

Cairo - Egypt 2016

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Planning of the Electric Power Distribution Systems Secaring Maximum Reliability at constraint Budget

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering

Prepared by:

Eng. Shazly Nasser Fahmy Ahmed

B.Sc. in electrical power engineering

Examination Committee

Title, Name and Affiliation

Signature

Prof. Dr. Mohamed Mohamed Ibrahim El Gazzar Electrical Power & Machines Engineering Dept. Faculty of Engineering, Al-Azhar University

Prof. Dr. Rizk Mohamed Elsayed Hamouda
Electrical Power & Machines Engineering Dept.
Faculty of Engineering - Abbasya,
Ain Shams University

Prof. Dr. Ahmed Rizk Abul'Wafaa Electrical Power & Machines Engineering Dept. Faculty of Engineering - Abbasya, Ain Shams University MAlus

Date: 16/3/2016

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Planning of the Electric Power Distribution Systems Securing Maximum Reliability at constraint Budget

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Degree of Master of Science in Electrical Engineering

Prepared by:

Eng. Shazly Nasser Fahmy Ahmed

B.Sc. in electrical power engineering

Supervision Committee

Title, Name and Affiliation

Prof. Dr. Ahmed Rizk Abul'Wafaa

Electrical Power & Machines Engineering Dept. Faculty of Engineering - Abbasya, Ain Shams University

Assoc. Prof. Dr. Aboul'Fotoh A. Mohamed Electrical Power & Machines Engineering Dept. High Institute for Engineering - El-Shorouk city El-Shorouk Academy <u>Signature</u>

Date:

16/3/2016

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfilment of the requirement for the M.Sc. degree in Electrical Engineering. The included work in this thesis has been carried out by the author at the Electrical Power and Machine Department, Ain-Shams University. No Part of this thesis has been submitted for a degree or a qualification at other university or institute.

Name: Shazly Nasser Fahmy Ahmed

Signature: Shazly Nasser Fahmy

Date: / / 2016

ACKNOWLEDGMENT

Thanks to ALLAH who gives us the power and hope to succeed.

Thanks must go to Allah the creator of this universe who ordered us to study and explore his creations in order to know him better. However, as I come to understand more, I find that there is so much more knowledge to absorb and to get to grips.

I am honored to record my deepest sense of gratitude and thanks to **Professor Dr. Ahmed R. Aboul'Wafa**, for the efforts he had exerted to make it possible for me to make this research reality and for the help he gave, the many advices and the patience and the understanding he has shown throughout this work.

Thanks deeply grateful to Associated. Professor Dr. Aboul'Fotouh A. Mohamed, for the time and great help enlightened many points and efforts he had spent helping me during developing this thesis

I would like to thank all staff members of faculty of engineering – Ain Shams University that will grant me the degree of Master of Science in Electrical Engineering.

My special thanks are also extended to all thanks to all the staff of the Electric Power and Machines Department in El-Shorouk Academy and specially **Eng. Wael abdelfatah** for their encouragement and support.

There are no enough words to thank **my parents**, **my wife** and **my brothers** for the good family atmosphere, which helped in completing this thesis and encouragement during all time of hard work to complete it.

Shazly Nasser

ABSTRACT

It is evident that electric utilities all over world are facing an increasing number of complaints about distribution systems quality. High levels of continuity and quality are the two characteristics that customers expect and demand. Also, distribution systems reliability increase constitutes one of the most important issues in the studies of the power distribution systems.

The purpose of this thesis is to find an optimal system configuration in the planning process to enhance distribution systems reliability using a decision making process based on both incremental cost and incremental benefits criteria.

This thesis uses A Mathematical Programming Language (AMPL) software to build an algorithm for selection between given alternatives the optimal system configuration to optimize the customer oriented reliability indices, e.g. System Average Interruption Duration Index (SAIDI). Also, the objective function of AMPL software is to minimize SAIDI and point out the corresponding system configurations. The optimization is subjected to not exceeding the allocated budget. The procedure is applied on Feeder 4 of Bus 6 of Roy Billinton Test System (RBTS). Five alternatives are available for upgrading the distribution systems minimizing system reliability indices.

Minimal Cut Sets (MCSs) technique is applied for each load point and used in building both of the objective function and the constraints in the AMPL optimization model file.

Reliability Network Equivalent technique is applied to simplify the analytical optimization process. This was necessary to overcome the limited capacity of student version of AMPL software of handling limited number of constraints and hence to make the AMPL software more or almost available for any complex distribution systems.

Pre-experimenting of robustness of proposed AMPL algorithm is achieved through comparing reliability indices obtained from NEPLAN software and from proposed AMPL software for base case and each configuration of alternatives for the test system.

Net Present Value (NPV) is used to capitalize the cost of energy interruption (ECOST), and added to capital budgeting to determine the total cost for the optimal investment.

Table of Contents

ACKNOWLEDGMENT	i
ABSTRACT	ii
Table of Contents	iv
List of Figures	viii
List of Tables	ix
List of Symbols	xi
List of Abbreviations	XV
Chapter One: Introduction	1
1.1 General	1
1.2 Optimized Planning of Distrubution System Maximizing Syst Reliability Reliability under Budget Constraint	
1.3 Proposed AMPL Software and NEPLAN Software	4
1.4 Analytical Techniques	4
1.4.1 Minimal Cut Sets (MCSs) Technique	5
1.4.2 Reliability Network Equivalent Technique	5
1.5 Thesis Objectives and Scope of the Thesis Work	6
1.5.1 Thesis Objectives	6
1.5.2 Scope of the Thesis work	6
1.6 Organization of the Thesis Work	7
Chapter Two: Optimized Planning of Distribution Maximizing System Reliability under Budget Constraint	•
2.1 Introduction	9
2.2 Mathematical Model of Optimized Planning Process	10
2.3 Power System	12
2.3.1 Power System Planning	12
2.3.2 Power System Reliability	13

Contents

2.3.3 1	Power System Hierarchical Levels	15
2.4 Distr	ibution System	16
2.4.1	Distribution System Configurations	19
2.4.1.1	Radial Distribution System	19
2.4.1.2	Open Ring Distribution System	20
2.4.2	Distribution System Reliability	20
2.4.3	Distribution System Reliability Evaluation	21
2.4.3.1	Load Point Reliability Indices	22
2.4.3.2	System Reliability Indices	22
2.4.4	Distribution System Reliability Techniques	25
Chapter 7	Three: Distribution System Reliability Techniq	ues26
3.1 Intro	oduction	26
3.2 Relia	ability Evaluation Techniques	26
3.3 Mini	mal Cut Sets (MCSs) Technique	27
3.4 Relia	bility Network Equivalent Technique	30
3.5 Defin	nition of a General Feeder	30
3.6 Basic	Formulas for a General Feeder	32
3.7 Relia	ability Network Equivalent	34
3.7.1	Equivalent Lateral Section	34
3.7.2	Equivalent Series Element	37
3.8 Proc	edure for Calculating Reliability Indices	37
Chapter I	Four: Proposed Planning Algorithms in the AM	IPL Software
Environn	ent	39
4.1 Intro	oduction	39
4.2 AMI	PL Modelling Language	40
4.2.1	Downloading and Starting AMPL Student Edition	42
4.2.2	Function Operation of AMPL	43

Con	ton	1 t C
$\sim on$	$\iota \cup \iota \iota$	u

Contents		
4.2.3	Code Writing	45
4.2.4	Mathematical Programming Solvers	45
4.2.5	AMPL Advantages	46
4.3 Mat	hematical Algorithms	46
4.3.1	Minimal Cut Sets (MCSs) technique	47
4.3.2	Reliability Network Equivalent Technique	48
4.4 Inve	stment Alternatives	51
4.5 Inve	stment Net Present Value	53
Chapter 1	Five: Applications of Proposed Algorithms	54
5.1 Intr	oduction	54
5.2 Roy	Billinton Test System (RBTS)	55
5.3 Syst	em Description	56
5.3.1	RBTS Bus 6 Distribution Test System	56
5.3.2	Single–Line Diagram	56
5.3.3	Customer and Loading Data	57
5.3.4	System Data	58
5.4 App	lication of MCSs Technique	58
5.5 App	lication of Reliability Network Equivalent Technique	61
5.6 Inve	stment Alternatives	70
5.7 NEP	LAN Planning and Optimization Software	76
Chapter S	Six: Results and Discussions	82
6.1 Intro	oduction	82
6.2 AM	PL Files	83
6.2.1	MCSs Files in AMPL Optimization Software	83
6.2.2	Reliability Network Equivalent Files in AMPL Optimization .	Software 83
6.3 Resu	ılts	83

Contents

6.3.1	Equivalent System Configuration	84
6.3.2	Detailed System Configuration	84
Chapter S	Seven: Conclusions and Future Work	86
7.1 Con	clusions	86
7.2 Futu	ıre Work	87
Reference	e	88
Appendic	ces	92
Append	lix A	92
Curricul	um Vitae	•••••
فص الرسالة	خله	1

List of Figures

Figure	No.	Caption I	Page No.
Figure	(2-1):	Reliability concepts from different perspective [18]	13
Figure	(2-2):	System reliability subdivision [14]	14
Figure	(2-3):	Hierarchical levels in a power system [14]	15
Figure	(2-4):	An overall electric power system and its distribution [22]	•
Figure	(2-5):	Single source radial power distribution system	19
Figure	(2-6):	Sectionalized loop configuration with three secondar	У
		substations per section	20
Figure	(3-1):	Five unique systems of three components: (1) is set	
г.	(2.2)	2-out-of-3 and (5) is parallel	
Figure	` ′	1	
_	(3-3):	£ 3	
Figure	(3-4):	Reliability network equivalent [5]	36
Figure	(4-1):	Function diagram of AMPL modeling language [41]	43
Figure	(5-1):	Roy Billinton Test System [3]	55
Figure	(5-2):	RBTS Bus 6 Distribution Test Systems [6]	57
Figure	(5-3):	Practical Equivalent Distribution System Config	
		RBTS Bus 6 Feeder 4	. 60
Figure	(5-4):	General Feeder for Feeder 4 of Bus 6 of RBTS	
Figure	(5-5):	Sub feeder 5 with ES5	66
Figure	(5-6):	Sub feeder 6 with ES6	
_	(5-7):		
Figure	(5-8):	Block diagram representing working of NEPLAN [4	
Figure	(5-9):	RBTS Bus 6 Distribution Test Systems - NEPLAN	80

List of Tables

Table No.	Caption	Page No.
Table (3-1):	Minimal Path and Cut Sets for the system show (3-3)	_
Table (4-1):	Investment alternatives number, cost and associa	ted action
		52
Table (5.1).	Minimal Cut Sets of sub-feeder	50
Table (5-1):	Minimal Cut Sets of sub feeder	
Table (5-2):	Distribution sub feeder's reliability data	
Table (5-3):	Minimal Cut Sets for each load point	
Table (5-4):	Load point indices, base system	
Table (5-5):	System reliability indices, base system	
Table (5-6):	Main feeder sections reliability data	
Table (5-7):	Lateral feeder sections reliability data	
Table (5-8):	Equivalent lateral section EL5 reliability data	
Table (5-9):	Equivalent lateral section EL6 reliability data	
	Equivalent lateral section EL7 reliability data	
	Equivalent lateral sections reliability data	
, ,	Equivalent series components ES5 reliability dat	
` ,	Equivalent series components ES6 reliability dat	
, ,	Equivalent series components ES7 reliability dat	
	Equivalent series components reliability data	
	Load point indices, base system	
	System reliability indices, base system	
Table (5-18):	Reliability indices of RBTS Bus 6 distribution	test system
	and their investment alternatives - NEPLAN	81
	Investment alternatives decision, EENS, ECOST SAIDI for equivalent System configuration usi echnique	ng MCSs
	Investment alternatives decision, EENS, ECOST	
	SAIDI for detailed system configuration using	Reliability
1	Network Equivalent technique	

List of Tables

Table (A-1): Feeder type and lengths of RBTS Bus 6 distribution	test
systems	92
Table (A-2): Customer data of RBTS Bus 6 distribution test systems	
Table (A-3): Reliability and system data	93

List of Symbols

λ_i, r_i	Failure rate and repair time for i^{th} component in a given distribution system
N_{comp}	Number of components in a given distribution system
	Average failure rate, outage duration and annual
λ_j, r_j, u_j	outage time of load point j
$Ncust_i$	Number of customers of each load point j
N _{seclp}	1 3
'secip	The number of main feeder component sections corresponding to each load point
N_{lp}	Number of load points in the system
$\lambda_{N_{\mathrm{seclp}}}, r_{N_{\mathrm{seclp}}}$	The failure rate and repair time of main feeder component sections corresponding to each load point in MCSs technique
u_{LP}	The annual outage time of load points in MCSs technique
u_{LINE}	The annual outage time of main feeder corresponding to each load point in MCSs technique
u_{LD}	The annual outage time of lateral distribution feeder connecting to its load point in MCSs technique
λ_{LD}	The failure rate for lateral distribution feeder connecting to its load point in MCSs technique
r_{LD}	The repair time for lateral distribution feeder connecting to its load point in MCSs technique
λ_{ij} , r_{ij}	Failure rate and outage duration (repair time or switching time) of the main section i in a general feeder