

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Modeling of Polymer Matrix Composite Pipes using Finite Element Analysis

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Ahmed Wagdy El-Desouki Abdel-Ghany

Bachelor of Science in Mechanical Engineering
(Design and Production Engineering)
Faculty of Engineering, Ain Shams University, 2010

Supervised By

Prof. Samy J. Ebeid
Associate Prof. Iman M. Taha

Cairo - (2016)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Modeling of Polymer Matrix Composite Pipes using Finite Element Analysis

by

Ahmed Wagdy El-Desouki Abdel-Ghany

Bachelor of Science in Mechanical Engineering (Design and Production Engineering) Faculty of Engineering, Ain Shams University, 2010

Supervising' Committee

Name and Affiliation	Signature
Prof. Samy Jimmy Ebeid	
Design and Production, Ain Shams University	•••••
Assos. Prof. Iman Mohamed Taha	
Design and Production , Ain Shams University	•••••

.

Date: 01 June 2016

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Modeling of Polymer Matrix Composite Pipes using Finite Element Analysis

by

Ahmed Wagdy El-Desouki Abdel-Ghany

Bachelor of Science in Mechanical Engineering
(Design and Production Engineering)
Faculty of Engineering, Ain Shams University, 2010

Examiners' Committee

Name and Affiliation	Signature
Prof. El-Sayed Youssef Suleiman El-Kady Production Engineering Department, Dean of Faculty of Engineering – Shoubra, Benha University.	
Prof. Mohammed Hazem Abdel-Latef Ahmed Design and Production Engineering Department, Faculty of Engineering, Ain Shams University.	
Prof. Samy Jimmy Ebeid Design and Production Engineering Department, Faculty of Engineering, Ain Shams University.	

Date: 01 June 2016

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

									5	i	g	į	1	a	t	ι	11	r	е
•	•	•	•	•	•				 •	•	•	•	•	•		•		•	•

Ahmed W. Abdel-Ghany

Date: 01 June 2016

Acknowledgments

I would like to gratefully acknowledge every person who has helped me to complete this thesis.

First, I wish to express my profound gratitude and appreciation to my advisors *Prof. Samy J. Ebeid* and *Dr. Iman Taha*, for their remarkable patience, helpful comments and enthusiastic support to finalize this work.

I also would like to express my deepest thank to my family, specially my parents for their understanding, endless support and encouragement when it was most required. Thanks to my wife *Alaa Allah* for her love and constant support, for all the late nights and early mornings, and for being a best friend.

Finally, I would like to thank my friends and colleagues for their support.

Ahmed W. Abdel-Ghany

Researcher Data

Name : Ahmed Wagdy El-Desouki Abdel-Ghany

Date of birth : 29/11/1987

Place of birth : Cairo, Egypt

Last academic degree : Bachelor Degree

Field of specialization : Mechanical Engineering

University issued the degree: Ain Shams University

Date of issued degree : July, 2010

Current job : Teaching Assistant, Design and

Production Engineering Department, Faculty of Engineering, Ain Shams

University, Cairo, Egypt.

Thesis Summary

failure of Polymer Matrix composite Structural investigated. The present work shows a numerical study for fiber reinforced polymer pipes produced by filament technique. The used combination of winding angles and type of reinforcement directly affect strength of the pipe the consequently its performance. Α progressive structural failure analysis is done for a four thin layered pipes oriented antisymmetrically $[\pm \emptyset^{\circ}]_2$ subjected to internal pressure using Finite Element Analysis. Three different composite structures investigated in this study: E-glass fiber/epoxy, carbon fiber/epoxy and aramid fiber/epoxy. The implemented methodology can be further applied to other structure types.

Three different criteria are selected for the analysis: Tsai-Hill, Tsai-WU and Hoffman criteria. Finite Element Analysis results are verified using published experimental results for E-glass/epoxy for the range of winding angles from [±45°]₂ to [±90°]₂ using ANSYS Composite PrepPost. Boundary conditions are defined for the model, and further analysis is done to select the optimum element size for reasonable computational cost. The last ply failure technique is applied to determine the structural failure of pipes. Finite Element model shows a good correlation for experimental burst pressure values with an average error of 6.8%, 2.9% and -2.6% using Hoffman, Tsai-Wu and Tsai-Hill criteria respectively.

Analysis is done for the full range of winding angles from $[\pm 0^{\circ}]_2$ to $[\pm 90^{\circ}]_2$ for the three different selected types of composites. The optimum winding angle for the three types of composites is realized at $[\pm 55^{\circ}]_2$ and a lowest value of burst pressure at $[\pm 0^{\circ}]_2$. Analysis results show that the maximum burst pressure values for the three materials as 10.9, 25.5 and 29.4 MPa for E-glass/epoxy, aramid/epoxy and carbon/epoxy respectively. At a winding lay up

of $[\pm 0^{\circ}]_2$ no significant effect is observed for changing the composite type where the three types show a burst pressure range from 0.6 to 1.3 MPa

Finally, recommended effective range of winding angles for E-glass fiber/epoxy are between $[\pm 15^{\circ}]_2$ to $[\pm 90^{\circ}]_2$ where the range of angles from $[\pm 0^{\circ}]_2$ to $[\pm 15^{\circ}]_2$ shows a drop in the burst pressure values compared with other winding angles. For carbon fiber/epoxy the recommended range exist between $[\pm 35^{\circ}]_2$ to $[\pm 90^{\circ}]_2$ and aramid fiber/epoxy between $[\pm 20^{\circ}]_2$ to $[\pm 90^{\circ}]_2$. The achieved Finite Element provides accurate predictions which allow the optimization of the composite pipe lay-up.

<u>Key words:</u> Burst pressure, Filament winding, Finite Element Analysis, Polymer matrix composites, Structural failure.

Table of Contents

Thesis Summary	i
Table of Contents	iii
List of Figures	v
List of Tables	ix
List of Abbreviations	X
List of Symbols	xi
1. Introduction	1
2. State of the Art	3
2.1 An Overview on Polymer Composites	3
2.2 Filament Winding	5
2.2.1 Overview	5
2.2.2 Winding Methodology	7
2.2.3 Parameters to control Winding angle	9
2.3 Fibrous Reinforcements	10
2.3.1 Glass Fiber	11
2.3.2 Carbon Fiber	12
2.3.3 Aramid Fiber	12
2.4 Matrix	13
2.5 Pipes and Pressure Vessels	14
2.5.1 Performance requirements for Pipes	14
2.5.2 Fiber reinforcement orientation codes	15
2.5.3 Residual stress	16
2.6 Experimental Investigation for filament wound pipes	17
2.7 Objectives of the Present work	19
3. FEA for Layered Orthotropic Pipes	20
3.1 Introduction	20
3.2 Failure Theories	20
3.2.1 Tsai Wu failure criterion	21

		3.2.2 Tsai Hill failure criterion	.21
		3.2.3 Hoffman failure criterion	.22
3	3.3	Model Building	.23
		3.3.1 Pipe Dimensions	.23
		3.3.2 Mesh Generation	.23
		3.3.3 Boundary Conditions	.24
		3.3.4 Material Definition	.25
3	3.4	Analysis Methods for Composites	.28
3	3.5	Optimum Mesh Size	.29
4. I	Disc	cussion and Comparative Analysis for the FEA Results	.33
4	4.1	Introduction	.33
4	1.2	FEA for E-glass Fiber/Epoxy pipes	.33
		4.2.1 FEA and Experiment Results Comparison	.33
		4.2.2 FEA of full winding angle range:	.36
۷	1.3	FEA for Carbon Fiber/Epoxy Pipes	.37
۷	1.4	FEA for Aramid fiber/epoxy pipes	.40
۷	1.5	Comparative Analysis for different FRPs	.41
۷	1.6	Optimum versus hoop winding angles	.41
5. (Cor	nclusion and Future Recommendations	.46
5	5.1	Conclusion	.46
5	5.2	Future Recommendations	.47
Ref	ere	nces	.48
An	nex	x I:	
AN	SY	S deformation and ply failure for E-glass fiber/epoxy pipes	.52
An	nex	х II:	
AN	SY	S deformation and ply failure for Carbon fiber/epoxy pipes	.60
An	nex	и III:	
AN	SY	S deformation and ply failure for Aramid fiber/epoxy pipes	.70

List of Figures

Figure 2.1: Comparison between composite and monolithic materials4
Figure 2.2: Structure of composite material4
Figure 2.3: Common form of Filament winding process5
Figure 2.4: (a) Composite frame of Lockheed Martin Missiles produced
using filament winding, (b) Filament wound pressure vessel with internal
stainless steel liner6
Figure 2.5: Continuous production process for hoop wound pipes6
Figure 2.6: Winding angle definition in filament winding7
Figure 2.7: Different winding forms
Figure 2.8: Basic winding patterns: (a) helical winding, (b) Hoop or
circumferential winding, (c) polar or longitudinal winding8
Figure 2.9: Developed envelope with fiber path10
Figure 2.10: Different types of fiber reinforcements
Figure 2.11: Different types of Matrix materials
Figure 2.12: Different types of pipe failure (a) Leakage (b) Burst15
Figure 2.13: Schematic view for the test setup of pipes subjected to
internal pressure
Figure 2.14: Codes used for stack-up (a) Symmetrical (b) Anti-
Symmetrical
Figure 3.1: Shell geometry generated
Figure 3.2: Shell elements and generated mesh along the cylinder profile
(a) Shell181 (b) Shell28124
Figure 3.3: Loading and constrains for pipe
Figure 3.4: Reference Direction for fibers
Figure 3.5: Fiber orientation for (a) $[\pm 60^{\circ}]_2$ (b) $[\pm 90^{\circ}]_2$ 27

Figure 3.6: Flow chart for the FEA using LPF28
Figure 3.7: Generated mesh versus different element sizes30
Figure 3.8: Percentage of error vs Number of elements for pure internal
pressure of E-glass/Epoxy pipe31
Figure 3.9: Final generated shell element for four layered pipe31
Figure 4.1: Comparative analysis between experimental results and Tsai-
Wu Failure Criterion for $[\pm \emptyset^{\circ}]_2$ E-glass fibers/epoxy pipes34
Figure 4.2: Comparative analysis between experimental results and Tsai-
Hill Failure Criterion for $[\pm \emptyset^{\circ}]_2$ E-glass fibers/epoxy pipes35
Figure 4.3: Comparative analysis between experimental results and
Hoffman Failure Criterion for $[\pm \emptyset^{\circ}]_2$ E-glass fibers/epoxy pipes35
Figure 4.4: FEA results for $[\pm \emptyset^{\circ}]_2$ E-glass fiber/epoxy pipes37
Figure 4.5: FEA results for $[\pm \emptyset^{\circ}]_2$ Carbon fiber/epoxy pipes39
Figure 4.6: FEA results for $[\pm \emptyset^{\circ}]_2$ Aramid fiber/epoxy pipes41
Figure 4.7: Comparing numerical burst pressure for different composites
42
Figure 4.8: Burst pressure for optimum winding angle $[\pm 55]_2$ 42
Figure 4.9: Comparing winding angle with numerical equivalent stresses
at failure for different composite materials
Figure 4.10: Number of layers for 55° and 90° winding angles at the
same burst pressure for the $\textbf{E-glass}$ $\textbf{fiber/epoxy}$ pipes using different
criteria44
Figure 4.11: Number of layers for 55° and 90° winding angles at the
same burst pressure for the Carbon fiber/epoxy pipes using different
criteria

Figure 4.12: Number of layers for 55° and 90° winding angle	s at the
same burst pressure for the Aramid fiber/epoxy pipes using of	lifferent
criteria	45
Figure I. 1: Total deformation in mm for [±0] ₂ pipes	53
Figure I. 2: Last ply failure for [±0] ₂ pipes	54
Figure I. 3: Total deformation in mm for [±30] ₂ pipes	55
Figure I. 4: Last ply failure for [±30] ₂ pipes	56
Figure I. 5: Total deformation in mm for [±45] ₂ pipes	57
Figure I. 6: Last ply failure for [±45] ₂ pipes	58
Figure I. 7: Total deformation in mm for [±55] ₂ pipes	59
Figure I. 8: Last ply failure for [±55] ₂ pipes	60
Figure I. 9: Total deformation in mm for [±60] ₂ pipes	61
Figure I. 10: Last ply failure for [±60] ₂ pipes	62
Figure I. 11: Total deformation in mm for [±75] ₂ pipes	63
Figure I. 12: Last ply failure for [±75] ₂	64
Figure I. 13: Total deformation in mm for $[\pm 90]_2$ pipes	65
Figure I. 14: Last ply failure for [±90] ₂ pipes	66
Figure II. 1: Total deformation in mm for $[\pm 0]_2$ pipes	
Figure II. 2: Last ply failure for $[\pm 0]_2$ pipes	
Figure II. 3: Total deformation in mm for $[\pm 30]_2$ pipes	
Figure II. 4: Last ply failure for [±30] ₂ pipes	72
Figure II. 5: Total deformation in mm for $[\pm 45]_2$ pipes	73
Figure II. 6: Last ply failure for [±45] ₂ pipes	74
Figure II. 7: Total deformation in mm for $[\pm 55]_2$ pipes	75
Figure II. 8: Last ply failure for [±55] ₂ pipes	76

Figure II. 9: Total deformation in mm for $[\pm 60]_2$ pipes	77
Figure II. 10: Last ply failure for [±60] ₂ pipes	78
Figure II. 11: Total deformation in mm for $[\pm 75]_2$ pipes	79
Figure II. 12: Last ply failure for [±75] ₂ pipes	80
Figure II. 13: Total deformation in mm for [±90] ₂ pipes	81
Figure II. 14: Last ply failure for [±90] ₂ pipes	82
Figure III. 1: Total deformation in mm for [±0] ₂ pipes	85
Figure III. 2: Last ply failure for [±0] ₂ pipes	86
Figure III. 3: Total deformation in mm for [±30] ₂ pipes	87
Figure III. 4: Last ply failure for [±30] ₂ pipes	88
Figure III. 5: Total deformation in mm for [±45] ₂ pipes	89
Figure III. 6: Last ply failure for [±45] ₂ pipes	90
Figure III. 7: Total deformation in mm for [±55] ₂ pipes	91
Figure III. 8: Last ply failure for [±55] ₂ pipes	92
Figure III. 9: Total deformation in mm for [±60] ₂ pipes	93
Figure III. 10: Last ply failure for [±60] ₂ pipes	94
Figure III. 11: Total deformation in mm for [±75] ₂ pipes	95
Figure III. 12: Last ply failure for [±75] ₂ pipes	96
Figure III. 13: Total deformation in mm for [±90] ₂ pipes	97
Figure III. 14: Last ply failure for [±90] ₂ pipes	98

List of Tables

Table 3.1: Dimensions of the pipe	.23
Table 3.2: E-glass fiber/epoxy Properties	.26
Table 3.3: Variation of results with element size	.30
Table 3.4: Mesh properties and statistics	.32
Table 4.1: FEA results for E-glass fiber/epoxy	.34
Table 4.2: Error percentage of different used criteria	.36
Table 4.3: FEA results for the non-experimentally proven range	.36
Table 4.4: Carbon fiber/epoxy and Aramid fiber/epoxy Properties	.38
Table 4.5: FEA results of different criteria for Carbon fiber/epoxy	.39
Table 4.6: FEA results of different criteria for Aramid fiber/epoxy	.40