INFLUENCE OF IN OVO INJECTION WITH AN EFFECTIVE BACTERIAL PREPARATION (BIFIDOBACTERIUM SPP.) ON SOME PRODUCTIVE AND PHYSIOLOGICAL TRAITS IN POULTRY

By

ABD EL-MONEIM EID ABD EL-MONEIM HASSAN

B.Sc. Agric. Sc. (Poultry Production), Zagazig University, 2007 M.Sc. Agric. Sc. (Poultry Physiology), Zagazig University, 2013

A thesis submitted in partial fulfillment Of

the requirements for the degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Poultry Physiology)

Department of Poultry Production
Faculty of Agriculture
Ain Shams University

Approval Sheet

INFLUENCE OF IN OVO INJECTION WITH AN EFFECTIVE BACTERIAL PREPARATION (BIFIDOBACTERIUM SPP.) ON SOME PRODUCTIVE AND PHYSIOLOGICAL TRAITS IN POULTRY

By

ABD EL-MONEIM EID ABD EL-MONEIM HASSAN

B.Sc. Agric. Sc. (Poultry Production), Zagazig University, 2007 M.Sc. Agric. Sc. (Poultry Physiology), Zagazig University, 2013

This thesis for Ph.D. degree has been approved by:

Dr.	. Abd E	l-Hamid E	l-Sayed Abd	El-Ham	id Y	oussef		.
	Prof. Univer	•	Physiology,	Faculty	of	Agriculture,	Damar	ıhour
Dr.	Or. Sayed Ahmed Abdel-Fattaah							
	Prof. Univer	•	Physiology,	Faculty	of	Agriculture,	Ain S	hams
Dr.	. Ibrahi	m El-Ward	lany El-Saye	ed				
	Prof. 1	Emeritus of	F Poultry Phy	ysiology,	Fac	culty of Agri	culture,	Ain

Date of Examination: 14 / 1 / 2017

Shams University

INFLUENCE OF IN OVO INJECTION WITH AN EFFECTIVE BACTERIAL PREPARATION (BIFIDOBACTERIUM SPP.) ON SOME PRODUCTIVE AND PHYSIOLOGICAL TRAITS IN POULTRY

By

ABD EL-MONEIM EID ABD EL-MONEIM HASSAN

B.Sc. Agric. Sc. (Poultry Production), Zagazig University, 2007 M.Sc. Agric. Sc. (Poultry Physiology), Zagazig University, 2013

Under the supervision of:

Dr. Ibrahim El-Wardany El-Sayed

Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Faisel Biomy Abd El-Salam

Lecturer of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Dr. Adel Mohamed Ahmed Abu-Taleb

Prof. Emeritus of Poultry Physiology, Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority

ABSTRACT

ABD El-MONEIM EID ABD EL-MONEIM HASSAN: Influence of In Ovo Injection with an Effective Bacterial Preparation (*Bifidobacterium spp.*) on Some Productive and Physiological Traits in Poultry. Unpublished Ph.D. Dissertation, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2017.

The present study was conducted to evaluate the potential beneficial impact of *Bifidobacterium bifidum* and *Bifidobacterium longum* inoculation in yolk sac of developing broiler embryos at 18th day of incubation on hatchability, growth parameters, haematological and blood biochemical profile, antioxidant and immunological status, antimicrobial potentiality, and histological changes. Three hundred broiler breeder eggs (Cobb-500) were obtained from a maternal flock 29 week in lay. Eggs were individually weighted at arrival and at day 17 of incubation prior to injection and divided into six equal treatment groups. The first and second groups (R1 and R2) were of control and vehicle control groups, respectively. *Bifidobacterium bifidum* was injected with high (5x10⁹ CFU/200 ml) and low (1x10⁷ CFU/200 ml) doses (R3 and R4 groups, respectively). Also, *Bifidobacterium longum* was injected with high (2x10⁹ CFU/200 ml) and low (7x10⁷ CFU/200 ml) doses (R5 and R6 groups, respectively).

Results showed that hatchability, body weight at hatch and feed consumption were not affected among experimental groups. While, live body weight, body weight gain and feed conversion were significantly improved in all injected groups during certain experimental periods and the overall period of the study. Carcass traits were not affected with Bifidobacteria strains injection except bursa relative weight was increased significantly in all injected groups. Hb concentration, WBCs count, MCV, MCH, MCHC, serum total protein, albumin, globulin levels and A/G ratio

were insignificantly affected by different treatments. Nevertheless, RBCs count and PCV% were increased in R3 group significantly. Serum AST, ALT activities were not affected with injected bacteria, however, ALP activity was decreased significantly in injected groups compared with the control group. Serum uric acid, creatinine and urea-N were not significantly influenced, but, significant increase in urea-N level was observed in R4 group. Serum glucose and T₃ levels were not significantly affected, meanwhile, T₄ level was decreased significantly. Serum cholesterol, triglycerides and LDL were insignificantly affected, however, HDL was decreased significantly in all injected groups except in R4 group was insignificantly increased. Antioxidant status of injected birds were improved; serum GSH content was insignificantly increased. MDA content was also decreased significantly in R3 and R5 groups. Moreover, SOD activity was increased in R4 and R6 groups significantly. Immunological parameters were also enhanced by treatment with Bifidobacteria strains: serum IgM was increased significantly. Furthermore, serum IgG and total Ig were increased insignificantly in all injected groups, however, IgA and antibody titer against NDV were not different among treatment groups, but numerical increase was observed in IgA levels in all experimental groups. All examined microbiological parameters were also significantly affected by in ovo inoculation with Bifidobateria strains. Total bacteria, total coliform, fecal coliform and Salmonella reduced, spp. significantly however, counts were Bifidobateria and total lactic acid bacteria populations were increased significantly in all treatment groups. Histological observations of ileum, bursa of Fabricius, thymus and spleen were greatly improved by bifidobacteria injection. Where, villus height, crypt depth and villus height: crypt depth were significantly increased in all of in ovo injected groups compared with the control groups. In ovo injection with Bifidobacterium strains also improved the histological structure of bursa of Fabricius and thymus gland as the two main lymphoid organs in birds in terms of B and T lymphocytes production. Furthermore, the histological structure of spleen was greatly improved in all injected groups as the white pulp area was dramatically increased on behalf of the red pulp area.

It is concluded that, *in ovo* injection of *Bifidobacterium bifidum* and *Bifidobacterium longum* in the residual yolk at the 18th day of embryogenesis could be used as an effective tool for improving subsequent post hatch productive performance, antioxidant and Immunological status of broiler chicks, without adverse effects on hatchability traits.

Based on the present results, it is recommended to use $Bifidobacterium\ bifidum\$ and (or) $Bifidobacterium\ longum$, especially with doses of $5x10^9$ CFU and $7x10^7$ CFU, respectively, for $in\ ovo$ inoculation of the developing embryos in order to improve productive, physiological and immunological status of hatched chicks.

Key words:

Bifidobacterium bifidum, Bifidobacterium longum, Performance, Antioxidant and Immunological status, Microflora, Broiler.

ACKNOWLEDGMENTS

First and foremost, all prayerful thanks are due to our generous *Allah* the most beneficent and merciful who gave me the ability to complete this work.

I had the honor to work under the supervision of **Prof. Dr. Ibrahim El-Wardany El-Sayed**, Professor of Poultry Physiology,
Department of Poultry Production, Faculty of Agriculture, Ain Shams
University, and deep gratitude is extended for his sincere supervision,
valuable advices and help during the whole period and in revising the
manuscript to be in its final form.

I wish to express my deepest thanks to **Prof. Dr. Adel Mohamed Ahmed Abu-Taleb**, Professor of Poultry Physiology, Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, for his sincere supervision, valuable advices, continuous help, co-operation, providing the facilities and revising the manuscript.

My deep gratitude is extended to **Dr. Faisal Bayoumi Abd El-Salam,** Lecturer of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his valuable advices, co-operation, encouragement and constant interest throughout this work.

I wish to express my deepest thanks to Co-supervisor **Prof. Dr. Magda Mostafa Wakwak,** Professor of Poultry Physiology, Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, for her sincere supervision, valuable advices, co-operation, encouragement, constant interest throughout this work and moral support during this work.

I wish to express my deepest thanks to **Dr. Shimaa Abdel Raouf Amin Ali,** lecturer of Microbiology, Department of Microbiology, Faculty of Agriculture, Ain Shams University, for her great efforts in exploring the microbiological examinations of this study.

Appreciation is also extended to all the staff members and workers of the Department of Poultry Production, Faculty of Agriculture, Ain Shams University and Poultry Research Unite, Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority for their great support and kind help during the experimental work.

Finally, I wish to express my deepest appreciation to my parents, wife, children, brothers, sisters, all members of my family and my friends for continuous support, help and credible encouragement and to everybody who shared and helped me in making this work possible.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Antibiotics as growth promoters	4
2. Prebiotics	5
3. Probiotics	6
3.1. Bifidobacteria as growth promoter	8
3.2. Probiotics mechanisms of action	9
3.3. Effects of probiotics on hatchability	10
3.4. Effects of probiotics on growth performance parameters	11
3.4.1. Effects of probiotics on live body weight and body weight gain	12
3.4.2. Effects of probiotics on feed consumption and feed conversion ratio	14
3.4.3. Effects of probiotics on mortality rate	15
3.4.4. Effects of probiotics on carcass characteristics	16
3.5. Effects of probiotics on blood constituents	18
3.6. Effects of probiotics on antioxidant status	21
3.7. Effects of probiotics on immune response and antibodies production	22
3.8. Effects of probiotics on the alternation of intestinal microbial population	24
3.9. Effects of probiotics on some histological changes	26
4. Probiotics and <i>in ovo</i> technology	28
MATERIALS AND METHODS	30
1. Experimental procedures	30
1.1. Incubation and <i>in ovo</i> administration	30

	Page
1.2. Experimental birds	31
1.3. Housing and management	32
1.4. Experimental diet	32
2. Measurements	32
2.1. Hatchability and the cause of embryonic mortality	32
2.2. Growth performance parameters	32
2.2.1. Live body weight and body weight gain	32
2.2.2. Feed consumption and feed conversion ratio	33
2.3. Carcass characteristics	35
2.4. Physiological and biochemical parameters	35
2.4.1. Haematological parameters	36
2.4.1.1. Hemoglobin value (Hb)	36
2.4.1.2. Packed cell volume (PCV%)	36
2.4.1.3. Red blood cells (RBCs) count	36
2.4.1.4. White blood cells (WBCs) count	36
2.4.2. Blood serum biochemical parameters	36
2.4.2.1. Serum glucose	36
2.4.2.2. Serum total proteins	36
2.4.2.3. Serum albumin, globulin and albumin to globulin ratio	26
(A/G ratio)	36
2.4.2.4. Serum cholesterols and triglycerides	37
2.4.2.5. Serum thyroxine and triiodothyronine	37
2.4.2.6. Serum transaminases and alkaline phosphatase	37
2.4.2.7. Serum urea, uric acid and creatinine	37
2.4.2.8. Antioxidant status	37
2.4.2.9. Humoral immune response: antibody production	20
against Newcastle disease (ND) virus	38
2.4.2.10. Serum IgA, IgM, IgG and total Ig concentrations	38
3. Histological examination	38
4. Bacterial isolation, identification and enumeration	38
4.1. Counts of total bacteria	39

	Page
4.2. Counts of Bifidobacteria spp	39
4.3. Counts of total lactic acid bacteria	39
4.4. Counts of total coliforms and fecal coliform	40
4.5. Counts of Salmonella spp	40
5. Statistical analysis	40
RESULTS AND DISCUSSION	41
1. Hatchability, cause of embryonic mortality and body weight	41
at hatch	41
2. Live body weight and body weight gain	44
3. Feed consumption and feed conversion ratio	48
4. Carcass characteristics	51
5. Haematological parameters	54
6. Blood biochemical analysis	57
6.1. Serum total protein, albumin, globulin levels and A/G ratio	57
6.2. Serum transaminases and alkaline phosphatase activity	60
6.3. Serum urea-N, uric acid and creatinine	62
6.4. Serum glucose and thyroid hormones	64
6.5. Serum cholesterols and triglycerides	67
6.6. Antioxidant status	69
6.7. Immunoglobulins (IgG, IgM, IgA and total Ig) and	
humoral immune response against Newcastle disease virus	72
(NDV)	
6.8. Histological observations	76
6.8.1. Ileum histology	76
6.8.2. Thymus glands histology	79
6.8.3. Bursa of Fabricius histology	81
6.8.4. Spleen histology	83
6.9. Bacterial isolation, identification and enumeration	85
SUMMARY AND CONCLUSION	91
REFERENCES	95
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Experimental treatments	31
2	Ingredients and calculated chemical composition of the basal diet	34
3	Hatchability (%), body weight at hatch (BWH) and causes of embryonic mortality of Cobb broiler chicks in experimental groups	42
4	Effect of <i>in ovo</i> injection with bifidobacteria on live body weight (g) and body weight gain (g/bird/day) of Cobb broiler chicks at different ages	45
5	Effect of <i>in ovo</i> injection with bifidobacteria on feed consumption (g/bird/day) and feed conversion (g feed/g gain) of Cobb broiler chicks at different periods	49
6	Effect of <i>in ovo</i> injection with bifidobacteria on carcass characteristics of Cobb broiler chicks in experimental groups	52
7	Effect of <i>in ovo</i> injection with bifidobacteria on haematological parameters of Cobb broiler chicks in experimental groups	55
8	Effect of <i>in ovo</i> injection with bifidobacteria on total protein, albumin, globulin and A/G ratio of Cobb broiler chicks in experimental groups	58
9	Effect of <i>in ovo</i> injection with bifidobacteria on transaminases and alkaline phosphatase of Cobb broiler chicks in experimental groups	61
10	Effect of <i>in ovo</i> injection with bifidobacteria on urea-N, uric acid and creatinine of Cobb broiler chicks in experimental groups	63
11	Effect of <i>in ovo</i> injection with bifidobacteria on glucose and thyroid hormones levels of Cobb broiler chicks in experimental groups	65
12	Effect of <i>in ovo</i> injection with bifidobacteria on cholesterols and triglycerides of Cobb broiler chicks in experimental groups	68
13	Effect of <i>in ovo</i> injection with bifidobacteria on antioxidant status of Cobb broiler chicks in experimental groups	70

		Page
14	Effect of <i>in ovo</i> injection with bifidobacteria on immunoglobulins (IgG, IgM, IgA and total Ig) and humoral immune response against Newcastle disease virus (NDV) of Cobb broiler chicks in experimental	73
15	groups Effect of <i>in ovo</i> injection with bifidobacteria on histomorphological parameters of ileum in broiler chicks	77
16	Effect of <i>in ovo</i> injection with bifidobacteria on total bacteria, total lactic acid, Bifidobacteria, total coliform, fecal coliform and Salmonella spp. populations (Log cfu/g) of Cobb broiler chicks in experimental groups	87

LIST OF FIGURES

Figure		Page
1	Inhibition of enteric bacteria and enhancement of barrier function by probiotic bacteria	9
2	Hatchability (%) as influenced by different <i>in ovo</i> treatments.	43
3	Haemorrhage of yolk may be the cause of embryonic mortality, possibly due to the rough edge of injection needle.	43
4	Abnormal position of the embryo (head between the legs) as a cause of embryonic mortality.	43
5	Normal position but the embryo died before piping the egg shell.	43
6	Live body weight (g) during starter period of Cobb broiler chicks in experimental groups.	46
7	Live body weight (g) during grower period of Cobb broiler chicks in experimental groups.	46
8	Body weight gain (g) of Cobb broiler chicks in experimental groups.	46
9	Feed consumption (g/bird/day) of Cobb broiler chicks in experimental groups.	50
10	Feed conversion (g feed/g gain) of Cobb broiler chicks in experimental groups.	50
11	Carcass characteristics of Cobb broiler chicks in experimental groups.	53
12	Carcass characteristics of Cobb broiler chicks in experimental groups.	53

		Page
13	Carcass characteristics of Cobb broiler chicks in experimental groups.	53
14	Haematological parameters of Cobb broiler chicks in experimental groups.	56
15	Haematological parameters of Cobb broiler chicks in experimental groups.	56
16	Total protein, albumin, globulin and A/G ratio of Cobb broiler chicks in experimental groups.	58
17	Transaminases of Cobb broiler chicks in experimental groups.	61
18	Alkaline phosphatase of Cobb broiler chicks in experimental groups.	62
19	Urea-N, uric acid and creatinine of Cobb broiler chicks in experimental groups.	63
20	Thyroid hormones levels of Cobb broiler chicks in experimental groups.	65
21	Glucose levels of Cobb broiler chicks in experimental groups.	66
22	Cholesterols and triglycerides of Cobb broiler chicks in experimental groups.	68
23	SOD of Cobb broiler chicks in experimental groups.	70
24	MDA and GSH of Cobb broiler chicks in experimental groups.	71
25	Immunoglobulins (IgG, IgM, IgA and total Ig) of Cobb broiler chicks in experimental groups.	74
26	Humoral immune response against Newcastle disease virus (NDV) of Cobb broiler chicks in experimental groups.	74