

Assessment of Cerebrovascular Resistance Index in Chronic Liver disease Patients with and without Hepatic Encephalopathy using Transcranial Doppler Ultrasonography

Chesis

Submitted for Partial Fulfillment of Master Degree In Internal Medicine

By

Moataz Bellah Hussien Ali (M.B., B. Ch.)

Supervised by

Prof. Dr. Sameh Mohammed Ghaly

Professor of Internal Medicine Faculty of Medicine - Ain shams University

Prof. Dr. Sherif Monier Mohamed

Professor of Internal Medicine Faculty of Medicine - Ain shams University

Dr. Hossam Samir Elbaz

Lecturer of Internal Medicine Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2015

بِسْمِ اللَّهِ الرّحمَنِ الرّحيمِ

رَتْغَ وَابَرِهُ لَا يَتُهُ الْمَالِكِ فَيَا مِالِي إِمْكِلَ صَالِكًا لِرْضَاهُ وَانِي الْمِهِلَ صَالِكًا لِرْضَاهُ وَانِي الْمُهَالِي فَالِكُ الْرِضَاهِ وَانِي مُوانِي الْمُهَالِي فَالْكُونِي الْمُؤَالُةِ الْمُؤَالُةِ الْمُؤَالُةِ الْمُؤَالُةِ الْمُؤَالُةِ الْمُؤالِدِي

[संचीक्ता व्वंगिंक

صدق الله العظيم

النمل.. اية رقه 19

First of all I wish to express my thanks to **ALLAH**, to the Most Merciful and the Most Grateful for His generous care throughout my life.

I wish to express my deepest gratitude to **Prof. Dr. Sameh Mohammed Ghaly,** Prof. of Internal Medicine, Faculty of
Medicine, Ain-Shams University for his constant guidance, Constructive
supervision and following the performance and progress of this thesis. I
much benefited from his creative thinking.

I would also like to express my gratitude and appreciation toward **Prof. Dr. Samia Ashour Mohamed,** Head of Neurology department, Faculty of Medicine, Ain-Shams University for her cooperative sharing in our study. And her kind approval for doing this thesis study.

I am greatly indebted to **Prof. Dr. Sherif Monier Mohamed**, Prof. of Internal Medicine, Faculty of Medicine, Ain-Shams University for his constant guidance and valuable opinions, suggestions and constructive criticism.

I am greatly indebted to **Dr. Hossam Samir Elbaz.** Lecturer of Internal Medicine, Faculty of Medicine, Ain-Shams University for his great help and valuable assistance in reading, revision and discussion of all results of this thesis.

I would also like to express my deepest gratitude and appreciation toward. **Dr. Ahmed Mohamed El-Sadek,** Lecturer of Neurology department, Faculty of Medicine, Ain-Shams University for his effective work and sharing in interpretation and analysis of the results of this thesis.

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vii
Introduction	1
Aim of the Work	4
Review of Literature	
-Liver Cirrhosis	5
-Hepatic Encephalopathy	29
-Transcranial Doppler Ultrasonography	49
Patients and Methods	60
Results	65
Discussion	97
Summary	107
Conclusion	111
Recommendation	112
References	113
Arabic Summary	

List of Abbreviations (Cont.)

ACA : Anterior Cerebral Artery

AIH : Autoimmune Hepatitis

ALD : Alcoholic Liver Disease

ALT : Alanin Transferase

ANA : Anti Nuclear Antibodies

ASMA : Anti Smooth Muscle Antibodies

AST : Aspartate Transaminase

AASLD :American Association for the study of liver

Diseases

CBC : Complete Blood Count

CBF : Cerebral blood flow

CHC : Chronic Hepatitis C

HBV : Hepatitis B virus

HCV : Hepatitis C Virus

HE : Hepatic Encephalopathy

HH : Hereditary Hemochromatosis

HRS : Hepatorenal Syndrome

HSC : Hepatic Stellate Cells

ICH : Intracranial hemorrhage

IDU : Intravenous Drug Users

INR : International Normalized Ratio

LKM1 : Anti Liver Kidney Microsomal Antibodies

MCA : Middle Cerebral Artery

MHE : Minimal hepatic encephalopathy

List of Abbreviations (Cont.)

NAFLD : Non Alcoholic Fatty Liver Disease

OLT : Orthotopic Liver Transplantation

PCA : Posterior cerebral artery

PI : Pulsatility Index

PSC: Primary Sclerosing Cholangitis

RI : Resistance Index

SBP : Spontaneous Bacterial Peritonitis

SD : Standard Deviation

TCCD : Transcranial Color Coded Duplex Sonography

TCD : Transcranial Doppler Ultrasonography

TIPS : Trans Jugular Interahepatic Portosystemic Shunt

WD : Wilson's Disease

WHC : West Haven Classification

List of Tables

Eable No	v. Eitle Page No
Table (1):	Causes of liver cirrhosis
Table (2):	Indications and contraindications of liver transplantation
Table (3):	Accepted Guidelines for a Normal TCD Study
Table (4):	Effects of Different Physiological States on TCD Flow Velocity
Table (5):	Distribution of the studied groups: 66
Table (6):	Comparison between group I (control) and group II & III (cases) as regard ages
Table (7):	Comparison between group II and group III (cases) as regard ages:
Table (8):	Mean and standard deviation of pulse, blood pressure and temperature in the three groups
Table (9):	Comparison between group (II), group (III) as regard P values of pulse, blood pressure and temperature:
Table (10):	The mean hemoglobin level (gm/dl) in our study groups
Table (11):	Comparison between group I (control) & group II, III (cases) as regards hemoglobin level (gm/dl)

List of Tables (Cont.)

Eable No	v. Citle Page V	lo.
Table (12):	Comparison between group I (control) & group II, III (cases) as regards white blood cells count X 10 ³ /cmm.	71
Table (13):	Comparison between group I (control) & group II, III (cases) as regards Partial Thromboplastin Time (P.T.T)	72
Table (14):	Comparison between group II & group III as regards Partial Thromboplastin Time (P.T.T)	72
Table (15):	Comparison between group I (control) & group II, III (cases) as regards (INR):	73
Table (16):	Comparison between group II & group III as regards (INR):	73
Table (17):	The median (25-75 P) of liver enzymes and bilirubin in group (I).	74
Table (18):	The median (25-75 P) of liver enzymes and bilirubin in group (II)	75
Table (19):	The median (25-75 P) of liver enzymes and bilirubin in group (III)	75
Table (20):	Comparison between group I (control) & group II, III (cases) as regard median (ALT, AST, Total and direct Bilirubin)	77
Table (21):	Comparison between group II &group III as regard median (ALT, AST, Total and direct Bilirubin).	78

List of Tables (Cont.)

Eable No	v. Citle	Page No.
Table (22):	Comparison between group I (contragroup II &III (cases) as regards m serum albumin (gm/dl)	nean of
Table (23):	Comparison between group II and regards serum albumin level (gm/dl).	
Table (24):	The median (25-75 P) of serum collevel in studied groups	
Table (25):	Comparison between group I (congroup II, III (cases) as regards creatinin.	serum
Table (26):	Comparison between group II and gras regards serum creatinin (gm/dl)	oup III 81
Table (27):	Descriptive statistics of TCD finding right and left middle cerebral artery in I (control).	n group
Table (28):	Descriptive statistics of TCD finding right and left middle cerebral artery in II	n group
Table (29):	Descriptive statistics of TCD finding right and left middle cerebral artery in III	n group
Table (30):	Comparison between group II and gras regards TCD parameters for cerebral artery (MCA)	middle

List of Tables (Cont.)

Cable No	v. Citle	Page No.
Table (31):	Comparison between group I (controgroup II &III as regards TCD parame middle cerebral artery (MCA)	ters for
Table (32):	Correlation between resistance index MCA with other studied parame group II&III (cases)	ters in
Table (33):	Correlation between pulsatility incright MCA with other studied parameters group II&III (cases)	eters in
Table (34):	Correlation between Resistance index MCA with other parameters were stugroup II&III (cases)	died in
Table (35):	Correlation between Pulsatility index MCA in to other studied parameters in II&III (cases)	n group

List of Figures

Figure No	. Citle Page N	o.
Figure (1):	TCD probe positions over different acoustic windows of the skull	50
Figure (2):	TCD screen waveform with velocity scale	51
Figure (3):	Gender distribution of the studied groups	66
Figure (4):	Comparison between group I (control) and group II & III (cases) as regard ages	67
Figure (5):	The three groups as regard hemoglobin level (gm/dl)	70
Figure (6):	Comparison between group I, group II & group III as regards (INR).	74
Figure (7):	Comparison between group I, group II & group III as regards the median of ALT level (U/L).	76
Figure (8):	Comparison between group I, group II & group III as regards the median of AST level (U/L)	76
Figure (9):	Comparison between group I, group II & group III as regards the median of bilirubin levels (mg/dl)	77
Figure (10):	Comparison between group I, group II & group III as regards the mean albumin levels (gm/dl).	79
Figure (11):	Resistance index R.I of Right & Left Middle cerebral artery (MCA) in different groups of the study	85

List of Figures (Cont.)

Figure No	. Gitle	Page No.
Figure (12):	Pulsatility index Right and Left I different groups of the study	
Figure (13):	Results of diagnostic validity middle cerebral artery resistance in its best cut-off value	dex and
Figure (14):	Results diagnostic validity test of cerebral artery pulsatility index best cut-off value.	and the
Figure (15):	ROC curve analysis showing diagnostic performance of resistant (R.I) for discriminating patient encephalopathy from those encephalopathy.	ce index ts with without
Figure (16):	ROC curve analysis showing diagnostic performance of pulsatility (P.I) for discriminating patient encephalopathy from those encephalopathy.	ty index ts with without

Introduction

iver cirrhosis and chronic liver disease were the 10th leading cause of death for men and the 12th for women in the United States in 2001, killing about 27,000 people each year. Worldwide, an estimated 130–170 million people have HCV infection. HCV prevalence is highest in Egypt at >10% of the general population (*Hajarizadeh et al.*, 2013).

In Egypt liver cirrhosis and chronic liver disease is a major problem, the commonest underlying cause is HCV infection, the highest prevalence rate of HCV infection in the world have been reported among Egyptian blood donor and seroprevelance rates of 30-40% in villagers (*Gueera et al.*, 2012).

Hepatic encephalopathy is a brain dysfunction caused by liver insufficiency and/or portosystemic shunting. It manifest as a wide spectrum of neuropsychiatric abnormalities ranging from subclinical alterations to coma, after exclusion of other known brain disease (*Vilstrup et al.*, 2014).

The development of hepatic encephalopathy negatively impacts patient survival. The occurrence of encephalopathy severe enough to lead to hospitalization is associated with a survival probability of 42% at 1 year of follow-up and 23% at 3 years as reported in (*Khungar and Poordad*, 2012) study.

So in our study, were tried to explore pathophysiological etiologies in developing hepatic encephalopathy and find a different explanation other than the old theories like hyperammonimea, GABA theory; which is cerebral vascular impairment in developing hepatic encephalopathy and put in mind its correction in treatment plan.

So the current study finding cut-off value for cerebrovascular resistive indices may help in screening chronic liver disease patients and prediction of possibility for developing encephalopathy.

Cerebral auto-regulation has been reported to be preserved in patients with liver cirrhosis. But in patients with hepatic encephalopathy cerebral autoregulation is impaired (*Strauss et al.*, 2000).

Transcranial Doppler (TCD) is the only non invasive real-time neuro-imaging modality for the evaluation of characteristics of blood flow in basal intracerebral vessels. TCD has been rapidly evolving from a simple non invasive diagnostic tool to an imaging modality with broad spectrum of clinical applications (*Tsivgoulis et al.*, 2009).

Resistance index (RI), which is a measure of pulsatile blood flow that reflects the resistance to blood flow caused by micro vascular bed distal to the site of measurement. Pulsatility index (PI), which assesses arteriolar vascular integrity (*Ulises et al.*, 2014).

The mean cerebral blood velocity is not a reliable parameter to detect the alteration of cerebral blood flow. It was found that the cerebral vascular resistance increased with the severity of liver cirrhosis (*Sugano et al.*, 2001).

The cerebral pulsatility and resistive indices changed in parallel with the severity of hepatic encephalopathy. Doppler parameters significantly increased when hepatic encephalopathy worsened. Increased cerebral vascular resistance might reflect reversible functional changes rather than irreversible anatomical damage. In patients with acute or chronic liver failure cerebral perfusion, determined by TCD, was increased and levels of ammonia and bilirubin were reduced following treatment with the molecular adsorbents recirculating system (an extracorporeal liver support device). Hepatic encephalopathy and cerebral blood flow, determined by transcranial Doppler, improved by liver dialysis treatment (*Huang et al., 2003*).