IN SEPSIS AND SEPTIC SHOCK IN PEDIATRIC ICU

Thesis

Submitted for Partial Fulfillment of Master Degree (M.SC.) In Pediatrics

By

Radwa Hassaan Mahmoud

MB.B.Ch (2010)
Ain Shams University

Under the Supervision of

Prof. Dr. Tarek Ahmed Abd El Gawad

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Marwa Moustapha Attia Al-Fahham

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2015

List of Contents

Title	Page No.
List of Tables	II
List of Figures	IV
List of Abbreviations	V
Introduction	1
Aim of the work	
Review of Literature	
• Chapter (1): Sepsis an+d septic shock	4
• Chapter (2): Sepsis induced myocardial	dysfuction.15
• Ohapter (3): Sepsis - induced ECG chan	ges22
• Chapter (4): Management strategies of	sepsis and
septic shock	36
Patients and methods	55
Results	61
Conclusion	97
Recommendations	99
Summary	100
References	
Arabic Summary	_

List of Tables

Table No.	Title F	age No.
Table (1):	Modified table showing the internal pediatric sepsis consensus derived defin for sepsis and organ dysfunction a children.	itions mong
Table (2):	Modified table showing criteria for mu organ dysfunction	ltiple
Table (3):	Modified table showing the parameters us PRISM score	
Table (4):	Antibiotic choice based on risk factorsepsis	
Table (5):	Age, weight and height distribution a cases:	mong
Table (6):	Clinical causes of sepsis among study ca	
Table (7):	Causes of sepsis among cases	62
Table (8):	The most serious complications occ	rurred
	among study cases:	63
Table (9):	Ventilation status among the study case	es: 64
Table (10):	Risk of mortality by PRISM score a	mong
	cases:	65
Table (11):	Lab data among study cases:	65
Table (12):	Lab date among study cases (cont)	65
Table (13):	Duration of ICU stay (days) and fate a	mong
	study cases:	67
Table (14):	Echo finding among study cases:	68
Table (15):	Holter finding among study cases:	69
Table (16):	Holter finding among study cases (cont.):	71
Table (17):	Correlations between echo findings and P	=-
Table (19).	Relation between Holter findings and P	
1 anie (10):	score:	
Table (10).	Correlation between Holter findings	
1 able (19);	PRISM score (cont.)	

List of Tables cont...

Table No.	Title Page	No.
Table (20):	Correlation between echo findings and numbe	r
14810 (20)1	of tachycardia by Holter:	
Table (21):	Correlation between echo findings and number	
	of bradycardia by Holter:	78
Table (22):	Correlation between echo findings and numbe	er
	of PVCs by Holter:	79
Table (23):	Correlation between echo findings and numbe	er
	of couplets by Holter:	81
Table (24):	Correlation between echo findings and numbe	er
	of triplets by Holter:	82
Table (25):	Correlation between echo findings and numbe	er
	of V-Tach by Holter:	85

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Synopsis of potential underlying mechanism myocardial dysfunction CAD	
Figure (2):	Autonomic nervous system control of	heart rate
Figure (3):	characteristics in sepsis (Fairchild et al., 2011) ACCM/PALS algorithm for the manag	ement of
Figure (4):	pediatric septic shock	62
Figure (5):	Percentage of DIC, renal failure and r	nechanical
Figure (6):	ventilation among cases	
9 ()	potassium and sodium levels among cases	66
Figure (7): Figure (8):	Fate of the cases Heart rate and ST segment changes among page 1.	
Figure (9):	PVCs and supra ventricular tachycardia	episodes
Figure (10):	among patients	
Figure (11):	Scatter diagram showing significant correlation between AO/LA and PRISM sc	ore in the
Figure (12):	patient subjects	ore in the
Figure (13):	Correlation between couplet episodes a	ınd mean
Figure (14).	PRISM score	75
	Correlation between PVC episodes and PRIS	
Figure (16):	Correlation between AO/LA and number of PVC	by holter80
Figure (17):	Correlation between LVIDd and number o holter	
Figure (18):		couplet by
Figure (19):	Correlation between AO/LA and number of	
	Holter	by Holter 84

LIST OF ABBREVIATIONS

Abb.	Meaning
AF	: Atrial fibrillation
ALT	: Alanine transaminase
AO	: Aortic annulus diameter in diastole
APACHE	: The acute physiology and chronic health evaluation
ARDS	: Acute respiratory distress syndrome
AVP	: Vasopressin
BNP	: B-type natriuretic peptide
CAD	: Coronary artery disease
CBC	: Complete blood count
CI	: Cardiac index
CO	: Cardiac output
CRP	: C- Reactive protein
CVP	: Central venous pressure
DIC	: Disseminated Intravascular Coagulopathy
ECG	: Electrocardiogram
ECMO	: Extracorporeal membrane oxygenation
ED	: Emergency department
EDS	: End Systolic Volume
EDV	: End Diastolic Volume
EF	: Ejection Fraction
EGDT	: Early, goal-directed therapy
ET-1	: Endothelin-1
FATD	: Femoral artery thermodilution
FIO2	: Fractional inspired oxygen
HM	: Holter monitoring
HRC	: Heart rate characteristics
HRV	: Heart Rate Variability
ICU	: Intensive care unit

LIST OF ABBREVIATIONS (CONT.)

Abb.	Meaning
IL-1	: Leukocytes such as interleukin-1
iNOS	: inducible NO synthase
IO	: Intraoral
IV	: Intravenous
IVSd	: Interventricular septal thickness in diastole
IVSs	: Interventricular septal thickness in systole
LA	: Left atrial antro-posterior diameter in diastole
LPS	: Lipopolysaccharide
LPWd	: Left posterior wall thickness in diastole
LPWs	: Left posterior wall thickness in systole
LV	: Left ventricular
LVIDd	: Left ventricular internal diameter diastole
LVIDs	: Left ventricular internal diameter in systole
MAP	: Mean arterial presuure
Mb	: Scavenger myoglobin
MDS	: Myocardial depressant substance
M-LVDP	: Left ventricle diastolic pressure
MODS	: Multiorgan dysfunction syndrome
MSP	: Mean arterial pressure
NO	: Nitric Oxide
PAC	: Premature atrial contractions
PaCO2	: Arterial carbon dioxide Partial pressure
PaO2	: Arterial oxygen partial pressure
PICUs	: Pediatric Intestinsive Care Units
Pmx B	: Polymyxin B
PRISM	: Pediatric risk of mortality
PSI	: Physiologic Stability Index
PVC	: Premature ventricular contractions
RAD	: Right axis deviation
RAE	: Right atrial enlargement
RCTs	: Randomized control studies

LIST OF ABBREVIATIONS (CONT.)

Abb.	Meaning
RVH	: Right ventricular hypertrophy
SIRS	: Systemic inflammatory response syndrome
ScvO2	: Central venous oxygen saturation
SE	: Septic encephalopathy
SIMD	: Sepsis-induced myocardial dysfunction
SIMV	: Spontaneous Intermittent Mandatory Ventilation
	Mode
SV	: Stroke Volume
SvO2	: Venous oxygen saturation
SVR	: Systemic vascular resistance
SVT	: Supraventricular tachycardia
TISS	: Therapeutic intervention scoring system
TLR-4	: Toll-like receptor -4
TNF-α	: Tumor necrosis factor-alpha
VT	: Ventricular tachycardia
β-AR	: β- adrenoceptor

First of all, thanks to Allah the most merciful for guiding me through and giving me the strength to complete this work the way it is.

I would like to express my sincere appreciation and my deep gratitude to **Prof. Dr. Tarek Ahmed Abd El Gawad**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for me It was indeed an honor to have been supervised by him spending a lot of his time and much effort to accomplish this work. I owe much to his guidance, and this work owed a lot to his insight and support.

I would like to express my sincere appreciation and my deep gratitude to Dr. Marwa Moustapha Attia Al-Fahham Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her close observation, effective help and careful supervision. She offered me continuously with her enriching advices which helped me throughout the work.

No words could adequately express my deepest appreciation to my family, for their continuous support and guidance. I shall remain indebted to them all my life.

Radwa Hassaan Mahmoud

سورة البقرة الآية: ٣٢

Introduction

INTRODUCTION

epsis is one of the leading causes of death in children whose mortality ranges from 4% to 20% (*Odetola et al.*, 2007). The incidence of sepsis and sepsis-related deaths appears to be increasing by 1.5% per year (*Angus et al.*, 2001). Moreover, morbidity and mortality from sepsis and septic shock are high resulting in their being the 10th most common cause of death in the United States (*Martin et al.*, 2003).

Sepsis is defined by the consensus conference as "the systemic inflammatory response syndrome (SIRS) that occurs during infection". It is generally viewed as a disease aggravated by the inappropriate immune response encountered in the affected individual (*Hotchkiss and Karl, 2003*).

The international consensus panel proposed the term "severe sepsis" to describe instances in which sepsis is complicated by acute organ dysfunction, and they codified "septic shock" as sepsis complicated by either hypotension that is refractory to fluid resuscitation or by hyperlactatemia (Angus and Poll, 2013).

Septic shock is characterized by myocardial dysfunction, loss of vascular tone, and capillary leak leading to diminished organ perfusion and the development of multiple organ system failure (*Rudiger and singer*, 2007).

Electrocardiogram (ECG) is the cardiovascular most frequently monitored physiologic signal in the intensive care unit (ICU) environment.

ECG remains the gold standard for diagnosis in spite of the advance of many other diagnostic techniques as it is a noninvasive, inexpensive, simple, and reproducible technique. Moreover, it is one of the most commonly used diagnostic tests that can be rapidly recorded with extremely portable equipment and is in general always obtainable (*Drew et al., 2004*).

Studies of children with septic shock have documented various rhythm disturbances with a range of incidences. For example, premature ventricular ectopics (PVCs) and other types of rhythm abnormalities that may form a risk for ventricular tachycardia and sudden cardiac death (Knoester et al., 2008).

Moreover, ECG is used to diagnose cardiac ischemia in critically ill patients who are unable to communicate symptoms. It was found that fourthy eight percent of patients with septic shock had possible or probable ECG -ischemia (Mehta et al., 2013).

AIM OF THE WORK

he aim of this study is to test the hypothesis that routine Holter analysis in non cardiac pediatric ICU septic patients could reveal important electrocardiographic disturbances that might go undetected.

SEPSIS AND SEPTIC SHOCK

epsis remains a major cause of morbidity and mortality among children in pediatric intensive care units (PICUs). It represents a clinical challenge even in developed countries, being a leading cause of admissions to the pediatric emergency department and the pediatric intensive care unit (*Lawrence*, 2011).

Initially, only adult definitions were applied to the pediatric studies. However, definitions of sepsis, severe sepsis, septic shock and multiple organ dysfunction/failure syndromes in children are slightly different when compared to those used for adults (*Biban et al.*, 2012).

An international panel of 20 experts in sepsis and clinical research from five countries (Canada, France, Netherlands, United Kingdom, and United States) was convened to modify the published adult consensus definitions of infection, sepsis, severe sepsis, septic shock, and organ dysfunction for children .These definitions are illustrated in table (1) (Mehra and Bakshi, 2007).