Assessment of diastolic function in Egyptian patients with hepatitis C viral infection using Tissue Doppler Imaging combined with N-Terminal pro Brain Natriuretic peptide

Thesis

Submitted for partial fulfillment of master degree in cardiology

BY

Ahmed Mostafa Saleh Mostafa M.B.B.CH

Supervisors

Professor Dr.HANY FOUAD HANNA, M.D.

Assistant Professor of Cardiology, AinShams university

DR.AHMED MOHAMMED ONSY, M.D.

Lecturer of Cardiology, AinShams university

Professor Dr.HANY ABDELRAHMAN NEGM, M.D.

Professor of Cardiology, Research Institute of Ophthalmology, Academy of Scientific Research and Technology

Faculty of Medicine

Ain Shams University

2010

تقييم الوظائف الانبساطية للمرضى المصرين المصابين بالتهاب الكبد الفيروسى سي باستخدام الدوبلرالنسيجي والدليل الحيوى المدر للصوديوم ذو النهاية الامينية

توطئة للحصول على حرجة العاجستير في أعراض القلب و الاوعية الحموية طبيب/ احمد مصطفى صالح مصطفى

تحريم اهراهم

استاذ دكتور / هاني فؤاد

استاذ مساعد امراض القلب , طب عين شمس

دكتور/ أحمد أنسى

مدرس أمراض القلب , طب عين شمس

استاذ دکتور/ هانی نجم

أستاذ باحث أمر اض القلب و رئيس وحدة القلب, معهد بحوث امر اض العيون , وزارة التعليم العالى و البحث العلمى

> قسم أمراض القلب و الاوعية الدموية كلية الطب,جامعة عين شمس 2010

Acknowledgement

I owe a great deal of gratitude for professor Hany Fouad, "Assistant Professor of Cardiology, Faculty of Medicine, AinShams University", for putting the cornerstone of this subject. His advices and support have been of inestimable great value. His meticulous review of related literature and discussion and his valuable additions were indispensible for finalizing this work.

The generosity and great support of Dr.Ahmed Onsy, "Lecturer of Cardiology, Facult of Medicine, AinShams University", had been of great value to support bringing up this work to light. His vast knowledge and experience were the source of many useful channels in our work. Moreover, I thank him for the personal advices which helped me a lot through my career.

Words can't express my deep and faithful appreciation for Professor Hany Negm, "Professor and of Cardiology Unit, Research Institute Ophthalmology". He has always been a father and a role model to be followed. His guidance and help had major impact on my personal life before my scientific one. Always stood by me at moments of hesitation and weakness and gave me solutions for issues I stood against. With his mixture of loving kind strictness, a better person I believe I became now. For Him I refer any uniqueness in this work and any future one I will go through.

1

I am deeply grateful for professor Akira Matsumori, "Professor of Cardiology, Kyoto University Graduate School of Medicine, President of International Society of Cardiomyopathy and Heart Failure and World Heart Federation Vice President", for bringing up the idea of this work. His support was of great value as he provided all the biomarkers materials .He offered so much of his vast experience and valuable advices through co-operation in this work.

I am also SO grateful for Professor Esmaat,"Professor of Tropical Diseases and GIT, Faculty Medicine,Cairo University and International Association of Liver Diseases", referring HCV patients to our institute and for his generous scientific advices. My friends Dr.Mohammed Gamal Esmaat, "Senior Resident of GIT diseases, National Liver Institute" and Dr. Hany Amin "Senior Resident of Hepato-surgery, National Liver Institute" had also great impact in the matter of referring HCV patients and for them I am so thankful.

I must thank Professor Azza Khaleel, "Professor and Head of Clinical Pathology Unit, Research Institute of Ophthalmology", and all the Clinical Pathology team at our institute for their great assistance, If it wasn't for them, none of this results would have been come to light. I am grateful for Dr.Inas Hamdy, "Lecturer of Clinical Pathology, Faculty of Medicine, Cairo University", for her amazing distinguished work analyzing biomarkers data. It was a harsh mission but she made it through under kind supervision of

Professor Nadida Gohar "Professor of Clinical Pathology, Faculty of Medicine, Cairo University and Head of Clinical Chemistry Unit".

I appreciate the co-operation of my fellow colleagues and Professors at Cardiology Unit, Research Institute of Ophthalmology. I appreciate the most the great assistance and guidance of Professor Mohammed Shalaby, "Assistant Professor of Cardiology, Research Institute of Ophthalmology" and Dr.Mohammed Haykal, "Assistant Lecturer of Cardiology, Research Institute of Ophthalmology".

Ahmed Mostafa Saleh 2010

1.	List of Tables		
2.	List of figures		
3.	List of Abbreviations		
4.	Introduction	1	
5.	Review of Literature		
	-Chapter I : HCV	6	
	-Chapter II: HFNEF	21	
	-Chapter III:NTPBNP	62	
6.	Methodology	72	
7.	Results	80	
8.	Discussion	105	
9.	Conclusion and Recommendation	112	
10	. Summary		114
11	. References		117
12	. Master Table		145
13	. Arabic Summary		

List of Tables:

Table 2.1	differential diagnoses for heart failure and heart failure-like
	syndromes in the presence of a preserved LVEF
Table 2.2	Comparison of the Characteristics of LV Morphology and
	Function in Patients With HF and Reduced LVEF and HFNEF
Table 2.3	ACC/AHA and ESC guidelines of treatment of HFNEF
Table 3.1	Comparison of BNP and NT pro BNP
Table 5.1	statistical mean values and standard deviation of Weight,
	Height, BMI and LV mass index in HCV group and control group
Table 5.2	statistical mean values, standard deviation and P value NT
	proBNP and QTc in HCV group and control group
Table 5.3	statistical mean values, standard deviation and P value of
	conventional Doppler parameters in HCV group and control
	group
Table 5.4	statistical mean values, standard deviation and P value of
	Tissue Doppler parameters in HCV group and control group
Table 5.5	statistical mean values, standard deviation and P value of Strain
	Rate Imaging parameters in HCV group and control group
Table5.6	Correlations between NTproBNP with Deceleration Time
	"DT",Ea/Aa ratio,E/Ea ratio,SRe/SRa ratio,E/SRe ratio,QTc
	interval and PCR
Table5.7	Correlation between PCR and Ea/Aa ratio
Table 5.8	Correlations between QTc interval with Ea/Aa and E/Ea ratio
Table 5.9	Correlations between Ea/Aa ratio with E/Ea ratio and SRa wave
Table 5.10	Correlations between SRe/SRa ratio with Ea/Aa
	ratio,NTproBNP,PCR,E/SRe ratio and SRa wave
Table 5.11	Correlations between E/SRe ratio with QTc interval,E/A
	ratio,Deceleration Time "DT",Ea/Aa ratio,E/Ea ratio,SRe/SRa
	ratio,NTproBNP and PCR
Table 6.1	studies with point of agreement and points of difference with
	our study

List of Figures:

Figure 1.1	HCV genome organization
Figure 1.2	HCV replication cycle
Figure 1.3	Prevalence of HCV around the globe
Figure 1.4	Response to peg-interferon plus ribavirin
Figure 1.5	Postulated behavior of the HCV infection
Figure 1.6	Potential effects of the hepatitis C virus (HCV) on the
3	myocardium
Figure 2.1	Pressure-time relationship during systole and diastole in
	healthy hearts
Figure 2.2	Contribution of impaired relaxation and decreased
	ventricular compliance
Figure 2.3	Sketch of a cardiac myocyte
Figure 2.4	Time progression paradigm of chronic heart failure
Figure 2.5	Schematic diagram of the changes in mitral inflow and DTI of
	mitral annular motion in relation to the grade of diastolic
	dysfunction
Figure 2.6	Color M-mode Vp
Figure 2.7	Mitral inflow tissue Doppler signals
Figure 2. 8	The two first strain rate images
Figure 2.9	One-dimensional deformation and Two-dimensional
	deformation
Figure 2. 10	Data sets derived from high frame rate 2-dimensional (2D)
	color Doppler myocardial velocity
Figure 2.11	Strain rate data
Figure 2.12	Noise sensitivity of strain rate measurements
Figure 2.13	Diagnostic flow chart for HFNEF
Figure 3.1	Biology of BNP and NT proBNP
figure 3.2	Outcomes of Patients Treated with NT-proBNP Guided
	Therapy
Figure 4.1	Estimating left Ventricular systolic and diastolic dimensions
	and Ejection Fraction ,EF, using Teicholz equation
Figure 4.2	pulsed wave tissue Doppler on lateral mitral annulus
	showing Ea and Aa waves
Figure 5.1	Resting 12 leads ECG of a HCV patient showing prolonged
	QT intevral
Figure 5.2	mean values of QTc interval in HCV group and control group

Figure 5.3	levels of NT proBNP in HCV group compared to normal
	control group
Figure 5.4	conventional pulsed wave Doppler of mitral inflow in HCV
	patient
Figure 5.5	A wave velocity in HCV group compared to normal control group
Figure 5.6	Deceleration Time in HCV group compared to normal control
	group
Figure 5.7	Pulsed wave tissue Doppler on septal,lateral,inferior and
	anterior mitral annuli of HCV patient
Figure 5.8	Tissue Doppler Ea velocity in HCV group compared to
	normal control group
Figure 5.9	Ea/Aa ratio in HCV group compared to normal control
Figure 5.10	E/Ea ratio in HCV group compared to normal control group
Figure 5.11	post processing strain rate indices of a HCV patient on basal
_	and mid septal,lateral LV walls showing SRe, SRa
Figure 5.12	post processing strain rate indices of HCV patient on basal
	and mid inferior and anterior LV walls showing SRe ,SRa
Figure 5.13	SRa "late diastolic rate of deformation" in HCV group
	compared to normal control group
Figure 5.14	Color M-mode of Mitral Valve of a HCV patient
Figure 5.15	correlation between NTproBNP levels and QTc interval
Figure 5.16	correlation between NTproBNP level and Ea/Aa ratio
Figure 5.17	correlation between NTproBNP levels and E/Ea ratio
Figure 5.18	correlation between NTproBNP and PCR level
Figure 5.19	ROC curve showing sensitivity and specificity of NTproBNP
	to diagnose diastolic dysfunction in both groups
Figure 5.20	ROC curve showing sensitivity and specificity of NTproBNP
	to diagnose diastolic dysfunction in HCV group
Figure 5.21	ROC curve showing sensitivity and specificity of E/SRe ratio
	to diagnose diastolic dysfunction in both groups
Figure 5.22	ROC curve showing sensitivity and specificity of E/SRe ratio
	to diagnose diastolic dysfunction in HCV group

List of Abbreviations:

Introduction		
HF	Heart Failure	
DHF	Diastolic Heart Failure	
HFNEF	Heart failure with Normal Ejection Fraction	
HFPEF	Heart failure with Preserved Ejection Fraction	
HCV	Hepatitis C Virus	
EF	Ejection Fraction	
LV	Left Ventricle	
NTPBNP	N Terminal Pro Brain Natriuretic Peptide	
Chapter I : HCV		
RNA	Ribonucleic acid	
ALT	Alanine Aminotransferase	
EIA	Enzyme Immunoassay	
PCR	Polymerase Chain Reaction	
PEG-IFN	Pegylated Interferon	
ARVC	Arrythmogenic Right Ventricular Cardiomyopathy	
MHC	Major Histocompatibility Complex	
TNF	Tumor Necrosis Factor	
NO	Nitric Oxide	
Chapter II : Heart Fa	ilure with Normal Ejection Fraction	
SR	Sarcoplasmic Reticulum	
SERCA	Ca2+ adenosine triphosphatase of the SR	
PLB	Phospholamban	
MMP	Matrix Metalloproteinases	
AGEs	Advanced Glycation End products	
EDPVR	End-Diastolic Pressure-Volume Relationship	
PNF	Pseudonormal filling	
Vp	Flow propagation velocity	
TVI	Tissue velocity imaging	
SVI	Strain velocity imaging	
SRI	Strain Rate Imaging	
TDI	Tissue Doppler Imaging	
PCWPm	mean Pulmonary Capillary Wedge Pressure	

CHARM study	Candesartan in Heart failure – Assessment of Reduction in	
	Mortality and morbidity study in Preserved EF	
Chapter III : N Terminal pro Brain Natriuretic Peptide		
ANP	Atrial Natriuretic Peptide	
CNP	C-type Natriuretic Peptide	
DNP	Dendroaspis Natriuretic Peptide	
NYHA	New York Heart Association	
ACS	Acute Coronary Syndrome	
PE	Pulmonary Edema	

Introduction: Hepatitis C disease burden is substantially increasing in Egyptian community, it is estimated that prevalence of HCV in Egyptian community reach 22% of total population. Recently there is a global alert of HCV cardiovascular complications.

Objective: To evaluate LV diastolic functions of HCV patients using Tissue Doppler Imaging and NTPBNP.

Methods: 30 HCV patients and 30 age, sex& BMI matched controls were evaluated by PCR, ECG, Echocardiography "conventional Doppler, Pulsed wave tissue Doppler (PW-TD) ,Strain Rate Imaging" & NTPBNP to assess LV diastolic functions. Mean age was 32.8 years \pm 5.1 in HCV group, 29.8 yrs. \pm 6.6 in control group. Cardiovascular anomalies and predisposing factors were excluded.

Results: HCV group has shown significant increase in QTc interval, significant statistical increase in A wave, Deceleration time; (p <0.05), highly significant decrease in tissue Doppler Ea; (p <0.001), highly significant decrease in Aa (p <0.001), highly significant increased E/Ea ratio (p value <0.001), significant decrease in Ea/Aa ratio and significant increase in SRa (p <0.05).

NTPBNP levels showed highly significant increase with mean value 222 pg/ml ± 283 in HCV group and 32.7 pg/ml ± 21.2 in control group (p value <0.001). The best Cut-off value of NTPBNP to detect diastolic dysfunction in HCV group was 213 pg/ml .

No statistical differences in SRe/SRa and E/SRe ratios were observed, however they had significant correlation with NTPBNP level and tissue Doppler parameters. The best cut-off value of E/SRe ratio to detect diastolic dysfunction in HCV group was 0.91, with 75% sensitivity and 100% specificity.

Conclusion and Recommendation: This data show the first direct evidence that HCV infection causes diastolic dysfunction without any other predisposing factors, probably due to chronic inflammatory reaction with mild fibrosis in the heart. Previous studies didn't follow strict inclusion and exclusion criteria that confirm the independent role of HCV to cause diastolic dysfunction.

Tissue Doppler was more sensitive to diagnose diastolic dysfunction than conventional Doppler.

NTPBNP is a strong indicator of diastolic dysfunction in HCV patients and is directly related to the level of viraemia hence we recommend its routine use as a follow up tool in HCV patients.

Further studies should evaluate E/SRe value to diagnose diastolic dysfunction.

Introduction

The predominance of systemic and pulmonary congestion in the clinical presentation of HF first directed investigators and clinicians to consider HF as a disorder of volume regulation, the so-called cardiorenal paradigm of HF. As contrast ventriculography, radionuclide ventriculography, and echocardiography became available, the syndrome of HF began to be equated with a reduced EF and treatment strategies focused on HF as a syndrome of contractile dysfunction. This has been referred to as the hemodynamic paradigm of HF. During this era, certain rare conditions were recognized to produce the HF syndrome despite preserved EF. However, the possibility that large numbers of patients with HF may have normal EF (HFNEF) was never entertained (1).

Considerable debate exists as to whether these patients should be labeled as having diastolic heart failure (DHF), heart failure with preserved systolic LV function (HF-PSF), or heart failure with normal Ejection fraction (HFNEF). In the absence of a discriminatory role for LV diastolic dysfunction, the latter term is preferred in the recently revised American College of Cardiology–American Heart Association guidelines for the diagnosis and management of heart failure ⁽²⁾.

Hepatitis C virus (HCV) is the cause of many different forms of heart diseases worldwide. Up till now, few cardiologists are aware of (HCV) as an etiology of heart disease and its treatment. HCV infection is seen globally, and is often undetected and therefore untreated. The burden of HCV-derived heart diseases is global, with higher prevalence in Asia, Africa, and low-and middle-income countries ⁽³⁾. Egypt has the highest prevalence of HCV in the world, apparently due to previous mass parenteral anti-schistosomal therapy ⁽⁴⁾. HCV derived heart diseases are chronic, persistent, and devastating diseases⁽³⁾.

The myocardium may be the target of several types of viral infections. Recently, the importance of hepatitis C virus (HCV) infection has been noted in patients with hypertrophic cardiomyopathy, dilated cardiomyopathy, myocarditis and left ventricular diastolic dysfunction^(5,6).

Echocardiography is an excellent noninvasive tool for the assessment of ventricular size and both systolic and diastolic function, and it is routinely used in patients with heart failure. The evaluation of diastolic function is not easily obtained by other techniques, and this feature is where echocardiography has its advantages ⁽⁷⁾.

In practice, a normal EF on 2-D echocardiography in patients with clinical evidence of heart failure immediately suggests the potential diagnosis of LV diastolic dysfunction. Doppler, color flow imaging, and myocardial tissue imaging can confirm or exclude the diagnosis of LV diastolic dysfunction by assessing valvular abnormality and intrinsic diastolic function and estimating diastolic filling pressure ^(8,9).

Early identification of diastolic dysfunction in asymptomatic (stage B) patients by echocardiography may provide an opportunity to manage the underlying etiology appropriately to prevent its progression to overt DHF (stage C of development of heart failure). (7)

Several findings suggest that the peak velocity of early diastolic displacement of the annulus is a relatively preload independent index of global LV that can be useful in unmasking pseudo normalization of the mitral inflow (10).

Because of its high reproducibility, feasibility, and relatively preload-independence, tissue Doppler recording of the early diastolic mitral annular velocity (Ea) in conjunction with the mitral inflow velocity (E) has become the first line of diastolic evaluation. Myocardial relaxation is impaired in almost all patients with diastolic dysfunction, which is best assessed by the Ea velocity of the mitral annulus using TDI. While early diastolic trans-mitral velocity (E) increases progressively as LV filling pressure increases, the mitral annular Ea velocity remains decreased at all stages of diastolic dysfunction ⁽⁷⁾.

Other recent tool is demonstrated to assess LV diastolic function which is strain and strain rate imaging, Strain, in daily language means, "stretching". In scientific usage, the definition is extended to mean "deformation" (12).

Extending the utility of BNP as a diagnostic marker to screen for asymptomatic or preclinical ventricular dysfunction (Stage B heart failure) according to the ACC/AHA guidelines in the general population has not proved cost-effective as the prevalence of heart failure is low⁽¹¹⁾.

However, if the test is used in patients stratified for risk using clinical criteria, BNP has proved useful to "rule out" ventricular dysfunction, thus eliminating the need for other more expensive diagnostic tests in this group ⁽¹³⁾.

Of all investigated neurohormones and natriuretic peptides, B type natriuretic peptide and N-terminal pro BNP are the best markers for ruling out left ventricular dysfunction and to detect the degree of severity^(14,15,16).