Role of MRI perfusion and diffusion in Characterization of ovarian tumors

Essay

Submitted for partial fulfillment of Master Degree In Radiodiagnosis

> By Mai Ahmed Mostafa M.B.B. Ch

> > Supervised by

Prof. Dr. Laila Hosny Mahmoud

Professor of Radio diagnosis Faculty of Medicine - Ain Shams University

Dr. Susan Adil Ali Abdul Rahim

Lecturer of Radio Diagnosis Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2016

بنير إلنهُ البَّمْزَ الرَّجِينَ مِر

[قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْكَالِيمُ الْحَكِيمِ]

سورة البقره رقم 32

Acknowledgement

First of all, thanks to **ALLAH** whose magnificent help was the main factor in completing this work, as I owe to him for his great care, support and guidance in every step in my life.

It is a great honor to me to express my deepest gratitude and appreciation to **Prof. Laila Hosny Mahmoud** Professor of Radio diagnosis, Faculty of Medicine, Ain Shams University, for her valuable help, precious advice, continuous encouragement and constructive guidance that were the most driving forces in the initiation and progress of this work.

I can't fully express my deepest thanks to **Dr. Susan Adil Ali Abdul Rahim** Lecturer of Radio diagnosis, Faculty of Medicine, Ain Shams University, for her supervision, valuable guidance, helpful discussions and suggestions.

My true love and warmest gratitude go to All My Family, who were, and still always be; by my side and without them I would have never been able to accomplish this work.

Mai Ahmed Mostafa

Contents

Pa	ige
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	1
Chapter 1: anatomy of the ovaries and their normal M	RI
appearance	4
Chapter 2: Pathology of ovarian tumors	19
Chapter 3: Pelvic MRI technique	37
Chapter4: MRI manifestations of ovarian tumors and role	of
diffusion and perfusion MR	61
Summary and Conclusion	94
References	96
Arabic Summary	

List of Abbreviations

AFP : Alpha feto protein

ADC : Apparent diffusion coefficient

DWI : Diffusion weighted image

DCE : Dynamic contrast enhanced

Dt : Lag time

FIGO : Federation of gynecology and obstetrics

FOV : Field of view

FT : Tissue blood flow

FS : Fat suppression

GRE: Gradient Echo

IAUC : Initial area under the curve

JZ : Junctional zone

MR : Magnetic resonance

PW : Perfusion weighted

ROI : Region of interest

SI max : Maximum absolute enhancement

SI rel : Maximum relative enhancement

WIR : Wash in rate

TSE : Turbo spin echo

TNM : Tumor, node, metastasis

Vb : Blood volume fraction

List of Tables

Table	Title	Page
1	Classification of different ovarian	19
	tumors according to histological origin	
2	Classification of different ovarian	22
	tumors according to gross appearance	
3	TNM staging systems for ovarian tumor.	34
4	FIGO staging criteria for cancer of the	35
	ovary, fallopian tube, and Peritoneum	
5	Parameters of different MRI sequences	39
6	Different MR sequences for evaluating	40
	the adnexa	
7	Interpretation of DWI Findings	46
8	Schematic for characterizing ovarian	61
	masses based on conventional MRI	
	features	
9	Criteria of benign and malignant tumors	66
	of the ovaries by conventional MR	
	images	

List of Figures

Fig.	Title	Page
1	Embryological origin of the ovaries	4
2	Components of ovary	7
3	Ligaments of the ovaries	9
4	The ovarian fossa at the posterolateral	10
	pelvic side wall	
5	Arterial supply of the ovaries	11
6	Venous drainage of ovary	12
7	Lymphatic drainage of ovary	12
8	Normal zonal anatomy in a	13
	premenopausal woman	
9	Axial T1WI Fat Suppression (FS) with	14
	IV contrast administration demonstrate	
	faint ovarian enchantment	
10	Ovaries of a 23-year-old woman	15
11	Normal ovarian appearance during	16
	Premenopausal period	
12	Ovaries in Postmenopausal woman	18
13	Ovaries of a 64-year-old woman	18
14	Gross specimen of resected ovarian	21
	Transitional cell tumor	
15	Gross specimen of resected ovarian	21
	dysgerminoma	
16	Macroscopic specimen of ovarian	22
	choriocarcinoma	
17	Macroscopic specimen of ovarian yolk	23
	sac tumor	
18	Gross specimen of ovarian fibroma	24

Fig.	Title	Page
19	Gross specimen of ovarian thecoma	24
20	Gross specimen of resected ovarian	25
	Serous cyst adnoma	
21	Gross specimen of a large adenexal mass	26
	representing a large ovarian teratoma	
	with intralesional hair within	
22	Gross specimen of resected ovarian	27
	mucinous cyst adnoma	
23	Gross specimen of resected ovarian	28
	endometroid tumor	
24	Gross specimen of resected ovarian clear	29
	cell tumor	
25	Granuloca cell tumor adult type	30
26	Gross specimen of sertoli leydig tumor	31
27	Shows technique of how sagital cuts are	40
	taken	
28	Shows technique of how axial cuts are	41
	taken	
29	Shows Technique of how coronal cuts	41
	are taken	
30	Diagram showing diffusion of water	43
	molecules	
31	A 63-year-old woman with a left ovarian	45
	cystadenocarcinoma	
32	Right ovarian fibroma in a 37-year-old	47
	woman	
33	Definition of regions of interest (ROIs)	51
34	Types of perfusion curves	52

Fig.	Title	Page
35	Analysis of perfusion by using IAUC	53
36	Showing how can we use WIR as semi-	55
	quantitative analysis	
37	Pharmacokinetic model: Brix modified	57
	model with 4 quantitative parameters	
38	Regions of interest (ROI)	58
39	False-positive perfusion result	59
40	Water signal in T1WI and T2WI	62
41	Fat shows high signal intensity on T1	63
	WI with drop of signal in FATSAT	
	sequence	
42	Hemorrhagic fluid	63
43	Thick mucinous material	64
44	Brenner tumor in a 70-year-old woman	67
45	Dysgerminoma in a 16-year-old girl	68
46	Serous cystadenoma	69
47	Ovarian serous cystadenocarcinoma	70
48	Mucinous cystadenoma in an 83-year-	71
	old woman	
49	Mucinous cystadenocarcinoma	72
50	Confluent bilateral ovarian endometrioid	73
	carcinoma	
51	Dermoid cyst	74
52	40 year old female patient presented	78
	with a-complex right ovarian tumor	
53	A 27-year-old woman with an ovarian	79
	fibrothecoma	
54	Treatment response of primary high-	81
	grade serous ovarian cancer	

Fig.	Title	Page
55	A 49-year-old woman with peritoneal	82
	dissemination from ovarian serous	
	adenocarcinoma	
56	Left ovarian cystic lesion with papillary	86
	projection	
57	Well defined cystic lesion with	87
	hemorrhage	
58	Bilateral dermoids	89
59	Pre-operative pelvic MRI	90
60	Ovarian fibroma right adnexal mixed	91
	cystic solid mass	
61	Left adnexal cystic lesion with posterior	93
	wall nodule	

Introduction

Female Gynecologic malignancies include cervical cancer, endometrial cancer, and ovarian cancer. Ovarian cancer is one of the most common female gynecologic malignancy, however it remains the leading cause of death among these diseases and is the fourth leading cause of cancer deaths in women. (*Jeong et al, 2010*)

Adnexal masses are common and challenging diagnostic problem because overlapping imaging features of benign and malignant tumors. (*Anthoulakis et al.*, 2014)

Determination of a degree of suspicion of malignancy is critical and is based mainly on imaging appearance. (*Jeong et al.*, 2010)

Magnetic resonance (MR) imaging is better reserved for problem solving masses when US findings are equivocal because, it is more accurate for diagnosis. (*Jeong et al.*, 2010)

MRI has the capabilities to locate solid masses and is used for diagnosis of malignant ovarian tumors with an overall accuracy of 88–93 % and high sensitivity of 92 %, specificity of 85 %, MRI has the technical capabilities for preoperative determination and predicting the benign or malignant nature of ovarian masses. (*Li et al.*, 2015)

A new MRI technique Perfusion MR provides advanced abilities for functional imaging, Post-processing can be carried out in the form of visual analysis and by description of the curves. (*Thomassin-Naggara et al.*, 2013)

Introduction and Aim of the Work

Perfusion is used to characterize the tumor vasculature in a tumor. Thus, malignant lesions show intense quick enchantment after contrast injection compared to benign lesions due to the extensive vascular system associated with malignant tumors (*Li et al.*, 2015)

Diffusion allows excellent delineation of malignant tumors because it shows suppression of background noise. We found that the combination of DWI and conventional non-enhanced MRI identified additional locations of pelvic tumors and improved the degree of confidence for interpretation.

Other advantages of DWI include its non-invasive and cost effectiveness. DWI does not involve radiation exposure and oral or intravenous administration of contrast material, and is comfortable for the patient. In patients with gynecological malignancies, DWI can play an major role in the detection of tumor recurrence within the pelvis as well as disseminated peritoneal recurrence. (*Kitajima et al.*, 2015)

Perfusion and diffusion MRI analysis can characterize sonographically indeterminate masses and help the radiologist to improve lesion characterization especially for benign masses helping the clinician to avoid unnecessary surgeries. (*Thomassin-Naggaraetal*, 2014).

Introduction and Aim of the Work

Aim of the Work

To discuss the value of MRI Diffusion and perfusion in characterization of ovarian tumors

Ovaries

The ovaries are paired organs of the female reproductive system, They lie within the ovarian fossa on the posterior wall of the true pelvis.

Ovarian embryology:

The ovaries develop on the posterior abdominal wall adjacent to the kidneys then descend into the pelvis as the kidneys ascend. The paramesonephric ducts in absence of the male hormones differentiate into female genital system including the ovaries, the uterus and upper two thirds of the vagina. The ovaries are the only truly intraperitoneal adnexal structures. The ovaries lie against Lateral pelvic walls, each is enclosed within the mesovarium of the broad ligament (Fig.1). (Schneck et al., 2012)

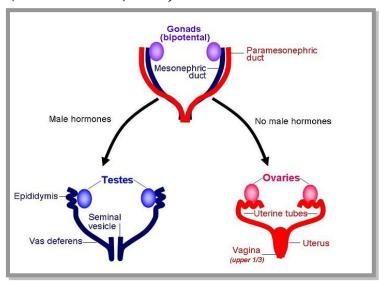


Fig. (1): Embryological origin of the ovaries (Quoted from Tanaka et al., 2004)