

Women's College for Arts, Science and Education

ROLE OF CATALYST PREPARATIONS FOR THE REMOVAL OF ENVIRONMENTAL **HAZARDS**

A Thesis Submitted for the M .Sc .Degree in Science (Physical Chemistry)

By

Amira Said Hassan Mohamed

Supervised by

Prof. Dr. Essam Mohamed Ezzo

Professor of Physical Chemistry Chemistry Department University College for Women (Arts, Science and Education)

Ain Shams University

Dr.Suzan Ahmad Hassan

Ass .Prof. of Physical Chemistry Chemistry Department University College for Women (Arts, Science and Education) Ain Shams University

Dr Magda Abdel Basset Elkherbawi

Lecturer of Physical Chemistry Chemistry Department University College for Women (Arts, Science and Education) Ain Shams University

Ain Shams University 2015

APPROVAL SHEET ROLE OF CATALYST PREPARATIONS FOR THE REMOVAL OF ENVIRONMENTAL HAZARDS

A Thesis Submitted for the M .Sc .Degree in Science (Physical Chemistry)

By

Amira Said Hassan Mohamed

Board of Advisors Approved

Prof. Dr. Essam Mohamed Ezzo

Ass. Prof .Suzan Ahmad Hassan

Dr. Magda Abdel Basset Elkherbawi

Head of chemistry department

Student name: Amira said Hassan Mohamed Hassan

Scientific degree: B.Sc. (Chemistry)

Department: Chemistry

Faculty: Women's College for Arts, Science and

Education

University: Ain Shams University

Date of graduate: 2011

Date of granted: 2015

Science and Education

ACKNOWLEDGEMENT

In the name of Allah, I start by thanking him for giving me the strength and patience to complete this study.

Words are on real assistance to express my deepest gratitude and thanks to Prof. Dr. Essam Mohamed Ezzo Professor of Physical Chemistry ,Chemistry Department, University College for women (Arts, Science and Education), Ain Shams University I would like to thank him for his guidance , patience and mentorship .in addition to his technical knowledge , his support has made it easier to go through the ups and downs of research .

Also, I am indebted to express my sincere thank to Dr.Suzan Ahmad Hassan and Dr Magda Abdel Basset Chemistry Department , University College for Women (Arts, Science and Education), Ain Shams University for their encouragement continuous help and carful guidance, through the accomplishment of this work. Finally , my deep thanks to all staff members at my department for their encouragement and moral support .

Amira said Hassan

بَنِالِنَّهُ الْحَالِحُ الْحَالِمُ الْحَالِمُ الْحَالِمُ الْحَالِمُ الْحَالِمُ الْحَالِمُ الْحَالِمُ الْحَالِمُ

وال الله تعالى .

المَّا اللَّهُ الْعَلِيمُ الْعَلِيمُ الْمَكِيمُ) (هَالْمِ الْمَكِيمُ الْعَلِيمُ الْمَكِيمُ)

سورة البقرة (32)

CONTENTS

Subjects	Page
ABBREVIATIONS	V
List of Tables	VI
List of Figures	XVIII
ABSTRACT	XXII
CHABTER I	1
I. INTRODUCTION	1
I.A. Active Carbon	3
I.B. Mechanism of Heterogeneous Catalytic Conversion	3
of Cyclohexane	
I.C. Kinetics of Heterogenous Catalytic Reaction in Flow	25
system: I.D. The Role of the Prepared Catalysts for the Removal of	26
Environmental Hazards.	
CHABTER II II. EXPERIMENTAL	30 30
II.A. STARTINGE MATERIALS	30
II.A. 1 . Materials	30
II.A. 2 . Catalyst Preparation	30
II.A. 3. Preparation of Cu/ AC Catalysts	32

II.A. 4. Preparation of Adsorbate Solutions	32
II.B. PHYSICAL STUDIES	33
II.B. 1. BET Surface Areas Measurements	33
II.B. 2. X-Ray Diffraction	38
II.B. 3. Thermogravemetric Analysis (TGA) and (DTA).	44
II.C. KINETIC STUDY OF THE HETEROGENEOUS	47
CATALYTIC CONVERSION OF CYCLOHEXANE	
II.C.1.1.Catalytic Apparatus of Flow Type	48
II.C.1. 2. Calibration of The micro – Dose Pump	50
II.C.1.3. Analysis of The liquid Product by Gas-liquid	50
Chromatograph.	
II.C.1.4. Determination of the order of reaction.	52
II.C.1.5.Determination of Apparent Activation Energy for	53
Conversion of Cyclohexane .	
II.C.1.6. Study of The effect of Catalysts particle size on the	54
Conversion of Cyclohexane.	
II .C.1.7.Determination of the change in weight of the catalysts	54

II.D. REMOVAL OF ENVIRONMENTAL HAZARDS	55
BY ADSORPTION.	
II.D.1 . Initial Heavy Metal Ions Concentrations	55
II.D.2. Adsorption Isotherm Models.	55
CHAPTER III	58
III. RESULTS AND DISCUSSION	58
III.A. PHYSIOCHEMICAL STUDIES OF THE	58
PREPERARD SOLIDS	
III.A.1. Surface and Textural Characteristic	58
III.A.2. The X-ray Diffraction.	69
III.A.3. Thermogravimetric and Differential Thermal	72
Analysis.	
III.B. KINETICS OF HETEROGENEOUS CATALYTIC	79
CONVERSION IN FLOW SYSTEM OVER THE	
CuAC CATALYSTS.	
III.B. i. Determination of the Rate of Conversion of	80
Cyclohexane Over CuAC Catalysts in Flow System.	
III.B.ii. Determination of the Apparent Activation Energy for	124
The catalytic Conversion of Cyclohexane over	
CuAC Catalysts .	

III.C. REMOVAL F ENVEROMENTAL HAZARDS BY ADSORPTION OVER THE PREPARED SOLIDS.	173
III.C.a. Removal of heavy metal ions from aqueous solution	173
over CuACP and/ or CuACS sorbents .	
III.C.a1. Effect of initial concentration.	173
III.C.a2. Adsorption models isotherm analysis.	175
CONCLUSIONS	182
SUMMARY	184
REFERENCE	187
ARABIC SUMMARY	

LIST OF FIGURES

NO	NAME	Page
1	Allotropes of carbon	3
2	The transitions of hydrogen atoms	11
3	Flow system apparatus	49
4	The calibration curve for the microdose apump	51
5	Gas –liquid chromatograph (perkin Elmar 8600)	52
6 а	Adsorption -desorption isotherm of nitrogen. For CuACP(I-III)	60
6b	Adsorption -desorption isotherm of nitrogen. For CuACS(I-III)	60
7a	The linear plots for nitrogen adsorption For CuACP(I-III)	61
7b	The linear plots for nitrogen adsorption For CuACS(I-III)	61
8a	The V-t plots of CuACP(I-III) catalysts	64

8b	The V-t plots of CuACS(I-III) catalysts	65
9a	The Pore volume distribution curves for CuACP(I-III) catalysts	66
9b	The Pore volume distribution curves for CuACS(I-III) catalysts	66
10a	X-RAY Diffraction for CuACP(I-III) catalysts	70
10b	X-RAY Diffraction for CuACS(I-III) catalysts	71
11	The TGA and DTA curves of (a - CuACPII, b- CuACPII and c- CuACPIII.	74
12	The TGA and DTA curves of (a - CuACSII, b- CuACSII and c- CuACSIII.	75
13a	Effect of variation of time of contact on the catalytic conversion of cyclohexane over CuACPI catalyst time,	81
13b	Effect of variation of time of contact on the catalytic conversion of cyclohexane over CuACPII catalyst time,	83
13C	Effect of variation of time of contact on the catalytic conversion of cyclohexane over CuACPIII catalyst time,	85
14a	Effect of variation of time of contact on the catalytic conversion of cyclohexane over CuACSI catalyst time	88

14b	Effect of variation of time of contact on the catalytic	90
	conversion of cyclohexane over CuACSII catalyst time	
14c	Effect of variation of time of contact on the catalytic	92
	conversion of cyclohexane over CuACSIII catalyst time	
15	Effect of temperature on the catalytic conversion of	125
	cyclohexane on a-CuACPI , b-CuACPIIand c-CuACPIII	
	catalysts preactivated in dry air CO ₂ free for 0.5-2.5 h	
16	Effect of temperature on the catalytic conversion of	128
	cyclohexane on a-CuACSI , b-CuACSIIand c-CuACSIII	
	catalysts preactivated in dry air CO ₂ free for 0.5-2.5 h	
17a	Effect of composition of a- CuACP on the specific activity	161
	and selectivity for alkylation and condensation at 280-380 ^o C.	
17 b	Effect of composition of a- CuACS on the specific activity	163
	and selectivity for alkylation and condensation at 280-380°C.	
18 a	Balandin's kinetic equation for the catalutyic	166
	conversion of cyclohexane over a -CuACP	
18 b	Balandin's kinetic equation for the catalutyic	167
	conversion of cyclohexane over a -CuACS	

LIST OF TABLES

NO	Title	Page
1	The chemical composition of the date stones	2
2	The minerals content in date seed	2
3	An overview of supports used in catalysts for various reactions.	7
4	A compilation of some studies on AC adsorption of different heavy metals	29
5	Represents the solid used from AC	32
6a	Adsorption - desorption isotherm for nitrogen at - 195 °C for CuACP(I-III)	35
6b	Adsorptio- desorption isotherm for nitrogen at -195 °C for CuACS(I-III)	36
7a	The value of d-spacing of the prepared solids calcinated at 500 °C .a- CuACPI.	39
7b	The value of d-spacing of the prepared solids calcinated at 500 °C .b- CuACPII.	39
7c	The value of d-spacing of the prepared solids calcinated at 500 °C .c- CuACPIII.	40
7d	The value of d-spacing of the prepared solids calcinated at 500 °C .d- ACS.	40
7e	The value of d-spacing of the prepared solids calcinated at 500 °C .e- CuACSI.	41

7f	The value of d-spacing of the prepared solids calcinated at 500 °C .f- CuACSII.	42
7g	The value of d-spacing of the prepared solids calcinated at 500 °C .g- CuACSIII.	43
8	Textural characteristic of the samples investigated.	63
9	The thermodynamic activation parameters of decomposition process .	76
10	The effect of space velocity on the catalytic conversion of cyclohexane over 0.500 g of CuACPI catalyst pretreated by air at 500 °C in flow system under normal pressure at 280 °C	94
11	The effect of space velocity on the catalytic conversion of cyclohexane over 0.500 g of CuACPI catalyst pretreated by air at 500 °C in flow system under normal pressure at 280 °C	95
12	The effect of space velocity on the catalytic conversion of cyclohexane over 0.500 g of CuACPI catalyst pretreated by air at 500 °C in flow system under normal pressure at 330 °C	96
13	The effect of space velocity on the catalytic conversion of cyclohexane over 0.500 g of CuACPI catalyst pretreated by air at 500 °C in flow system under normal pressure at 350 °C	97
14	The effect of space velocity on the catalytic conversion of cyclohexane over 0.500 g of CuACPI catalyst pretreated by air at 500 °C in flow system under normal pressure at 380 °C	98
15	The effect of space velocity on the catalytic conversion of cyclohexane over $0.500~\rm g$ of CuACPII catalyst pretreated by air at $500~\rm ^{o}C$ in flow system under normal pressure at $280~\rm ^{o}C$	99

16	The effect of space velocity on the catalytic conversion of cyclohexane over $0.500~\rm g$ of CuACPII catalyst pretreated by air at $500~\rm ^oC$ in flow system under normal pressure at $300~\rm ^oC$	100
17	The effect of space velocity on the catalytic conversion of cyclohexane over 0.500 g of CuACPII catalyst pretreated by air at 500 °C in flow system under normal pressure at 330 °C	101
18	The effect of space velocity on the catalytic conversion of cyclohexane over $0.500~\rm g$ of CuACPII catalyst pretreated by air at $500~\rm ^oC$ in flow system under normal pressure at $350~\rm ^oC$	102
19	The effect of space velocity on the catalytic conversion of cyclohexane over $0.500~\rm g$ of CuACPII catalyst pretreated by air at $500~\rm ^oC$ in flow system under normal pressure at $380~\rm ^oC$	103
20	The effect of space velocity on the catalytic conversion of cyclohexane over 0.500 g of CuACPIII catalyst pretreated by air at 500 °C in flow system under normal pressure at 280 °C	104
21	The effect of space velocity on the catalytic conversion of cyclohexane over $0.500~\rm g$ of CuACPIII catalyst pretreated by air at $500~\rm ^{o}C$ in flow system under normal pressure at $300~\rm ^{o}C$	105