

Invitro Studies on the potential protective effects of Dietes bicolor plant against carbon tetrachlorideinduced hepatotoxicity

A thesis submitted for the partial fulfillment of the requirements of Masters' degree in pharmaceutical sciences (Pharmacology and Toxicology).

By:

Mohamed Hussein Youssef Aly Mostafa

B. Pharm. Sc. (2012), Faculty of Pharmacy, Ain Shams University

Demonstrator of Pharmacology and Toxicology, Faculty of Pharmacy,

The British University In Egypt

Under the Supervision of:

Dr. Mohamed Mohey Eldin Elmazar.

Professor of Pharmacology and Toxicology, Dean of the Faculty of Pharmacy, The British University In Egypt (BUE)

Dr. Abd El Nasser Singab.

Professor of Phytochemistry,
Dean of the Faculty of Pharmacy, Ain Shams University,
Consultant for pharmaceutical affairs of Health and Population Minister

Dr. Mai Fathy Tolba, PhD.

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

> Faculty of Pharmacy Ain Shams University (2016)

Acknowledgement

In the name of Allah, The Most Gracious and The Most Merciful. Peace and blessings be upon our Prophet Mohammad and his good followers till the Day of Judgment.

At the beginning, I would like to explicit my sincere thanks and gratitude to my supervisor, Prof. Dr. Mohamed Mohey Eldin Elmazar, Professor of Pharmacology and Toxicology, Dean of Faculty of Pharmacy, The British University In Egypt, for being so generous with his knowledge and being so supportive in all aspects. I am so grateful to him for his sincere efforts and step-by-step guidance through the entire work. I learned a lot from his constructive and precious remarks. He is exemplary in his role as a mentor, a researcher, and a teacher, in the laboratory and in life.

I owe my sincerest thanks to my supervisor, Prof. Dr. Abd El-Nasser Singab, Professor of Phytochemistry, Dean of Faculty of Pharmacy, Ain-Shams University, for his kind help, constructive advice, and continuous wholehearted support. My work was greatly enhanced by his valuable contributions.

I would like to extend my appreciation and thankfulness to my supervisor Dr. Mai Fathy Tolba, lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain-Shams University, for her persistent support, step-by-step guidance and patience for all my concerns. Her genuine enthusiasm for scientific work and broad knowledge have greatly influenced me through

years. Also, I am very thankful for her participation in funding my work.

I owe my deepest gratitude to Prof. Dr. Suher Zada, Professor of Immunology, Biology department, American University in Egypt, for her constant, unwavering guidance and patience. She has not only provided me the opportunity to work in her lab, but her efforts to support me by all means will be fondly kept in my memory.

I am deeply grateful to Dr. Iriny Ayoub, Lecturer of Phytochemistry, Faculty of Pharmacy, Ain-Shams University, for her kind help, constructive advice, generous support and feedback. Also, I am really grateful to her for helping me with the phytochemistry work.

I would like to thank my friend Dr. Hany Said Ibrahim, lecturer of pharmaceutical chemistry, Faculty of pharmacy, Egyptian Russian University, for his help with the *in silico* studies. I deeply appreciate his patience and support.

Furthermore, I would like to thank my lab colleagues: **Mohi Youssef, Alseddig Mohamed** and **Noha Nagdy** for their assistance and collaboration during the time of my practical work for my thesis.

I am indebted to Dr. **Yasmeen Attia** and my colleagues in the Pharmacology department, The British University In Egypt: **Maha wally, Hadia Hosny**, and **Mai Mohamed** for their help and support throughout my post-graduate study. I would like to extend my appreciation and thankfulness to Dr. **Bassem Naguib** and Dr. **Mahmoud**

Salama, Lecturers of Pharmaceutical chemistry, The British University In Egypt, for their sincere help and support.

Finally, my deepest thanks go to my parents and siblings for always being there, encouraging me throughout the years, helping me to pursue my dreams and also believing anything is possible. Without their love and understanding, I could hardly endure the hard times throughout my study.

Mohamed Hussein

Table of Contents

Unitoaucii	on	1
1. Red	dox stress, Inflammation, and Cancer	1
2. Oxi	dative stress and apoptosis	9
3. Oxi	dative stress and liver diseases	14
4. Rol	e of oxidative stress in liver diseases (Fig.6)	19
4.1	Alcoholic liver disease (ALD)	19
4.2	Viral hepatitis	22
4.3	Non-alcoholic fatty liver disease (NAFLD)	25
4.4	Liver fibroproliferative diseases	27
4.5	Hepatocellular carcinoma (HCC)	28
5. Car	bon tetrachloride induced hepatotoxicity model	30
6. Glo	bal use of herbal remedies	33
7. Sily	marin	36
7.1	Pharmacokinetics	37
7.2	Pharmacodynamics	38
7.3	Drug interactions	43
7.4	Toxicity	44
8. Far	nily Iridaceae	45
9. Die	tes bicolor	47
10. F	Flavonoids	49
11. \	/itexin	54
11.1	Pharmacokinetics	55
11.2	Pharmacodynamics	57
11.3	Interactions	61
11.4	Toxicity	62
Aim of the	e work	63
Materials	and Methods	66
	ign of the work:	

(B)- Materials:	
(C)- Methods:	73
Results	98
Discussion	144
References	162

fist of figures:

Figure 1: Impact of free radicals released at sites of inflammation on cellular	
molecules	3
Figure 2: Free-radical generation, cellular stress and tumorigenesis	5
Figure 3: Chronic inflammation and production of free radicals regulate multip	ole
cellular processes	9
Figure 4: Intracellular sources of ROS and their interaction with the apoptotic	
pathway	
Figure 5: The redox homeostasis in the liver	15
Figure 6: General mechanism scheme of oxidative stress induced by various fa	ctors
in liver diseases	19
Figure 7: The metabolic process of ethanol in hepatocyte and the generation of	of
ROS contributing to various liver disease	22
Figure 8: The chemical structure of silbyna A, silbyna B, isosilbyna A, and isosill	byna
В	37
Figure 9: Morphology of Dietes bicolor: (A) whole plant; (B) leaves and (C)	
flowering branchflowering branch	48
Figure 10: The basic groups of flavonoids	49
Figure 11: Chemical structure of vitexin	54
Figure 12: Scheme of the cytoprotective activity assessment	67
Figure 13: Scheme showing the extraction of Dietes bicolor leaves	73
Figure 14: Scheme showing the chromatographic analysis of the <i>n</i> -butanol	
fraction	75
Figure 15: Standard calibration curve of vitexin	77
Figure 16: Standard BCA curve	83
Figure 17: Standard calibration curve for ALT activity	85
Figure 18: Standard calibration curve for AST activity	85
Figure 19: Standard calibration curve of PGE ₂ protein	91
Figure 20: Standard calibration curve of Bax protein	94
Figure 21: Standard calibration curve of Bcl-2 protein	95
Figure 22: Chemical structure of vitexin isolated from the n-butanol fraction	99
Figure 23: HPLC-DAD chromatograms of (A) vitexin and (B) aqueous methanol	lic
extract	101
Figure 24: Concentration response curve using MTT assay	103
Figure 25: Safety profiling of the tested agents using MTT assay	105
Figure 26: Effect of pretreatment on ALT activity	108
Figure 27: Effect of pretreatment on AST activity	111
Figure 28: Effect of pretreatment on SOD activity	114

Figure 29: Effect of pretreatment on GSH levels
Figure 30: Effect of pretreatment on MDA levels
Figure 31: Effect of pretreatment on PGE ₂ protein expression
Figure 32: (a) 3D interaction plot of celecoxib within the active site of COX-2; (b)
Illustrative diagram of the chemical structure of celecoxib
Figure 33: (a) 3D interaction plot of silibinin within the active site of COX-2; (b)
Illustrative diagram of the chemical structure of silibinin
Figure 34: (a) 3D interaction plot of vitexin within the active site of COX-2; (b)
Illustrative diagram of the chemical structure of vitexin
Figure 35: Effect of pretreatment on protein expression of (a) Bax and (b) Bcl-2 134
Figure 36: Effect of pretreatment on Bcl-2/Bax ratio
Figure 37: Effect of pretreatment on hepatic cytosolic caspase-3 activity 138
Figure 38: (a) 3D interaction plot of silibinin with the active site of caspase-3; (b)
Illustrative diagram of the chemical structure of silibinin
Figure 39: (a) 3D interaction plot of vitexin with the active site of caspase-3; (b)
Illustrative diagram of the chemical structure of vitexin

List of tables:

Table 1: Percent cell viability of HepG2 cells upon exposure to various concentrations (10, 20, 40, 80 and 100 mM) of CCl4 for 2 h103
Table 2: Percent cell viability of HepG2 cells upon treatment with three different concentrations; 50, 100 and 200 (μ g/ml) of silymarin, DBL, DBL-A, -B, -C or (μ M) of vitexin for 2 h
Table 3: The calculated ligand-binding interaction energy (Kcal/mol) and the hydrogen-bonding interaction of celecoxib, silibinin and vitexin with the conserved amino acid residues in the active site of Cox-2 enzyme106
Table 4: The calculated ligand-binding interaction energy (Kcal/mol) and the hydrogen-bonding interaction of silibinin and vitexin with the conserved amino acid residues in the active site of caspase-3 enzyme116

List of Abbreviations:

ROS	Reactive oxygen species
DNA	Deoxyribonucleic acid
FR	Free radicals
OH*	Hydroxyl anion
LPO	Lipid peroxidation
MDA	Malondialdehyde
TNF	Tumor necrosis factor
IL-1	Interleukin-1
IL-6	Interleukin-6
IL-8	Interleukin-8
CXCR4	CXC chemokine receptor 4
COX-2	Cyclooxygenase-2
RNA	Ribonucleic acid
8-OHdG	8-hydroxydeoxyguanosine
PI3K	Phosphoinositide 3-kinase
H ₂ O ₂	Hydrogen peroxide
c-Myc	Cellular avian myelocytomatosis virus oncogene
Cdk	Cyclin dependent kinase
NF-κB	Nuclear factor kappa B
ICAM-1	Intercellular adhesion protein-1
MMP	Matrix metalloproteinase
VEGF	Vascular Endothelial growth factor
FGF	Fibroblast growth factor
PDGF	Platelet-derived growth factor
DISC	Death-inducing signaling complex
Apaf-1	Apoptotic protease activating factor-1
CARD	Caspase recruitment domain
Nrf2	Nuclear factor erythroid 2- related factor 2
Keap1	Kelch-like ECH-associated protein-1
ARE	Antioxidant response element
CAT	Catalase enzyme
	1

SOD	Superoxide dismutase enzyme
GSH-Px	Glutathione peroxidase
GSH	Reduced glutathione
4-HNE	4-hydroxynonenal
HCV	Hepatitis C virus
GST	Glutathione S-transferase
IFN	Interferon
ATP	Adenosine triphosphate
ALD	Alcoholic liver disease
RNS	Reactive nitrogen species
GSSG	Oxidized glutathione
HBV	Hepatitis B virus
TGF-β	Transforming growth factor- β
HSC	Hepatic stellate cells
HCC	Hepatocellular carcinoma
NAFLD	Non-alcoholic fatty liver disease
NASH	Non-alcoholic steatohepatitis
FFAs	Free fatty acids
CCI ₄	Carbon tetrachloride
IUPAC	International union of pure and applied chemistry
OECD	Organization for economic co-operation and
	development
PBS	Phosphate-buffered saline
DMSO	Dimethylsulfoxide
ELISA	Enzyme-linked immunosorbent assay
PGE ₂	Prostaglandin E2
pNpp	Para-nitrophenylphosphate
pNA	Para-nitroaniline

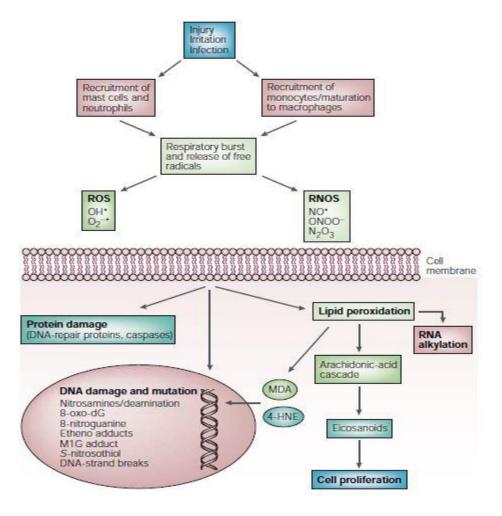
Introduction

1. Redox stress, Inflammation, and Cancer

Reactive oxygen species (ROS) are involved in a wide spectrum of diseases, including chronic inflammation, and a wide variety of cancers. Chronic inflammation is induced by biological, chemical, and physical factors and is associated with an increased risk of several human diseases including cancer (Bartsch and Nair, 2006; Schetter et al., 2010).

For example, inflammatory bowel diseases such as Crohn disease and ulcerative colitis are associated with increased risk of colon adenocarcinoma (Ekbom et al., 1990a; 1990b; Gillen et al., 1994). Similarly, pancreatitis and esophagitis, both induced by tobacco and alcohol, may transform normal tissue into pancreatic or esophageal cancer if the antioxidant system is not sufficiently effective (Garcia-Monzon et al., 2000; Murphy et al., 2005).

During inflammation, mast cells and leukocytes are recruited to the site of damage. This results in a "respiratory burst" due to an increased uptake of oxygen, and thus, induces an increased release and accumulation of ROS at the site of damage (Coussens and Werb, 2002; Hussain et al., 2003).


If two free radicals (FR) meet, they can join their unpaired electrons to form a covalent bond; the product is a non-radical. However, when a radical reacts with a non-radical, a new radical results, and a chain reaction can occur (Halliwell and Gutteridge, 1999). Since most biological molecules are non-radicals, the generation of reactive radicals such as OH* in vivo often initiates chain reactions.

For example, their attack upon fatty acid side chains in membranes and lipoproteins can initiate the chain reaction of lipid peroxidation, resulting in the production of a plethora of lipid peroxidation (LPO) products, many of them reactive toward protein and DNA (Halliwell and Gutteridge, 1999). One of the most abundant carbonyl products of lipid peroxidation is malondialdehyde (MDA), which is also generated as a side-product of prostaglandin biosynthesis (Golding et al., 1989; Marnett, 2002).

Moreover, inflammatory cells also produce soluble mediators, such as metabolites of arachidonic acid, cytokines, and chemokines, which act by further recruiting inflammatory cells to the site of damage, and thus producing more reactive species (Figs. 1 and 2).

For example, the aberrant expression of inflammatory cytokines (tumor necrosis factor (TNF), interleukin-1 (IL-1),

interleukin-6 (IL-6) and chemokines (IL-8, CXC chemokine receptor 4 (CXCR4)) as well as alterations in the expression of specific microRNAs and the further induction of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) enzymes, have been reported to play a role in oxidative stress-induced inflammation (Hussain and Harris, 2007).

Figure 1: Impact of free radicals released at sites of inflammation on cellular molecules. Adopted from **Hussain** *et al.* **(2003)**.

This sustained inflammatory/oxidative environment leads to a vicious circle that can damage healthy neighboring epithelial and stromal cells, and over a long period of time may lead to carcinogenesis (Federico *et al.*, 2007).

Cancer is a multistage process defined by at least three stages: initiation, promotion, and progression. Oxidative stress interacts with all three stages of this process (Schulte-Hermann *et al.*, 1990; Ames and Gold, 1992; Mantovani, 2005).

After an inflammatory stimulus, initiation of carcinogenesis mediated by ROS may be direct (oxidation, nitration, and halogenation of nuclear DNA, RNA, and lipids) or mediated by the signaling pathways activated by ROS (Figs. 1 and 2). The hydroxyl radical (OH*)-derived DNA damage includes the generation of 8-hydroxyguanosine, the hydrolysis product of which is 8-hydroxydeoxyguanosine (8-OHdG), the most widely used fingerprint of radical attack on DNA (Wiseman and Halliwell, 1996; Marnett, 2000) (Fig. 1).

In the promotion stage, ROS can contribute to abnormal gene expression, blockage of cell-to-cell communication, and modification of second-messenger systems, resulting in an increase in cell proliferation, metastasis and angiogenesis or a decrease in apoptosis of the initiated cell population (Storz, 2005).