

A DEVELOPED FEM-BEM PRACTICAL TECHNIQUE TO CONSIDER SSI IN THE LATERAL ANALYSIS FOR MULTISTORY BUILDINGS

By **Abdelrahman Mohamed Ibrahiem Ali Elmeliegy**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
Master of Science
In
Structural Engineering

A DEVELOPED FEM-BEM PRACTICAL TECHNIQUE TO CONSIDER SSI IN THE LATERAL ANALYSIS FOR MULTISTORY BUILDINGS

By

Abdelrahman Mohamed Ibrahiem Ali Elmeliegy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
Master of Science
In
Structural Engineering

Under the Supervision of

Prof. Dr. Youssef F. Rashed

Professor of Structural Analysis and Mechanics
Structural analysis and mechanics Deptartment
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

A DEVELOPED FEM-BEM PRACTICAL TECHNIQUE TO CONSIDER SSI IN THE LATERAL ANALYSIS FOR MULTISTORY BUILDINGS

By **Abdelrahman Mohamed Ibrahiem Ali Elmeliegy**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of

Master of Science
In

Structural Engineering

Approved by the Examining Committee

Prof. Dr. Youssef Fawzy Rashed, Thesis Advisor
(Professor at Faculty of Engineering; CairoUniversity)

Prof. Dr. Sameh S. Fahmy Mehanny, Internal Examiner
(Professor at Faculty of Engineering; CairoUniversity)

Prof. Dr. Ibrahiem Mahfouz, External Examiner

(Professor at Faculty of Engineering; Benha University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

DEDICATION

To whom I would never be without their guidance and support

To my mother, father, brother and sisters

A.M.Elmeliegy Feb.2017

ACKNOWLEDGEMENT

First of all due thanks go to **God** the most merciful and most graceful. Who without his guidance and inspiration nothing could have been accomplished.

I also wish to express my deep indebtedness to **Prof. Dr. Youssef Fawzy Rashed,** Professor of Structural Analysis and Mechanics, Structural Engineering Department, Faculty of Engineering, Cairo University, for his generous guidance and encouraging, sincere help, consistent support by all means and asking, valuable suggestions, and precise advice through all stages of this research work, I express my true thanks and gratitude for opening my mind to the true values of sincere and creativity. I have learned many lessons in working under his guidance and leadership that I will remember for an extremely long time.

My thanks also go to my colleagues, especially **Dr.Taha Abou Elnaga**, **Eng. Ahmed Fady**, **Eng. Anas Abu Rawash** and all friends who supported me all the way to achieve this work.

A.M.Elmeliegy....February,2017

Engineer: Abdelrahman Mohamed Ibrahiem Ali Elmeliegy

Date of Birth: 27/05/1991 **Nationality:** Egyptian

E-mail: aelmeliegy@gmail.com

Phone:0127 321 5801

Address: 27 Yasser Elgeheny - Omrania - Giza - Egypt

Registration Date: 1/10/2013

Awarding date: 2017 **Degree:** Master of Science

Department: Structural Engineering

Supervisor:

Prof. Dr. Youssef Fawzy Rashed

Examiners:

Prof. Dr. Youssef Fawzy Rashed

Prof. Dr. Sameh S. Fahmy Mehanni, (Internal Examiner)

Prof. Dr. Ibrahiem Mahfouz, (External Examiner)

Title of Thesis:

A DEVELOPED FEM-BEM PRACTICAL TECHNIQUE TO CONSIDER SSI IN THE LATERAL ANALYSIS FOR MULTISTORY BUILDINGS

Keywords:

BEM; Soil-structure interaction; static condensation; foundation-soil flexibility; static soil-structure interaction.

Summary:

In this thesis, a new practical technique for the analysis of buildings including soil-structure interaction is suggested. The new analysis is based on sub-structuring approach where the system is partitioned into two main parts which are the superstructure part and the raft-soil part. A static condensation technique is implemented at the column-raft interface. A developed algorithm representing the column-raft interface is implemented to ensure compatibility and equilibrium at that interface. Current practical analysis of SSI is implementing the static condensation at the raft-soil interface which is time consuming and tediously job. The new analysis has shown less time and effort in the modeling and analyses. This technique of analysis is presented here only for linear analysis. However, this technique can be extended to include nonlinear analysis such as no tension SSI, soil nonlinearity SSI.

Table of Contents

Table of Contents	vii
Chapter 1 Introduction and Background	1
1.1 General	1
1.2 Sources of Soil structure interaction	1
1.2.1 Kinematic interaction:	2
1.2.2 Inertial interaction:	2
1.3 Methods of soil structure interaction modeling	3
1.3.1 The direct approach [15-16]	3
1.3.2 The Substructure approach [17]	5
1.4 Methods of soil representation:	7
1.4.1 The Winkler model	7
1.4.2 The multi-Parametric model [19-20]	7
1.4.3 The elastic half space model	8
1.5 Available solutions in practice	8
1.5.1 The uncoupled manually iterative method	9
1.5.2 The conventional method in practice	11
1.6 Thesis objectives	12
1.7 Thesis outline	14
1.8 Conclusions	14
Chapter 2 Used Numerical Methods And Softwares	15
2.1 Introduction	15
2.2 The finite element method (FEM) [31]	15
2.2.1 Advantage of the FEM:	15
2.2.2 Disadvantage of the FEM:	15
2.3 The ETABS software [33]	16
2.3.1 ETABS modeling and simulation capabilities	16
2.3.2 ETABS analysis capabilities	16
2.3.3 Used ETABS files	17
2.4 Used structural objects and terminology in ETABS building model	19
2.4.1 Joint objects:	19
2.4.2 Support object:	19
2.4.3 Line objects:	19

2.4.4 Area / shell objects:	19
2.4.5 Meshes / divisions:	19
2.4.6 Body Constraint:	20
2.4.7 Diaphragm constraint:	20
2.5 The boundary element method (BEM) [36]	20
2.6 Raft terminology used in BEM/PLPAK	21
2.6.1 Raft foundation:	21
2.6.2 Boundary elements:	21
2.6.3 Nodes:	21
2.6.4 Extreme points:	21
2.6.5 Colum load modeling:	21
2.6.6 Wall load modeling in PLPAK:	22
2.7 Soil terminology used in BEM/PLPAK	23
2.7.1 Subgrade reaction (K):	23
2.7.2 Elastic modulus (E):	23
2.7.3 Poison's ratio (v):	23
2.7.4 Soil layers:	23
2.7.5 Soil cells/divisions:	23
2.8 The PLPAK software package [40]	25
2.8.1The PlGen:	27
2.8.2 PLView:	27
2.8.3 PL.exe:	27
2.8.4 PLPost:	27
2.8.5 PLCoreman:	28
2.8.6 Used PLPAK files	28
2.9 Soil modeling in PLPAK:	31
2.9.1 Winkler model:	31
	32
2.9.2 EHS modeling:	33
2.6 Conclusions	34
Chapter 3 The Proposed New Technique	35
3.1 Introduction	
3.2 The developed translator	
3.2.1 Translator ava	25

3.3 Rotational stiffness implementation in SSIPAK/PLPAK	38
3.4 Illustrative Example	39
1- Structural drawings	39
2- ETABS 3D Model	39
3- Data base file	42
3.5 Methodology and automation	44
3.6 The graphical user interface SSIPAK	48
3.7 Conclusions	49
Chapter 4 Numerical examples	50
4.1 Introduction	50
4.2 Example set 1	50
4.3 Example set 2	71
4.4 Example set 3	92
Bare frame results:	93
Shear wall results	96
4.5 Example set 4	99
Chapter 5 Summary, Conclusions and Recommendations for Fu	uture Work
4.1 Summary	102
5.2 Conclusions	102
5.3 Recommendations for future work	103
ARABIC SUMMARY	2

LIST OF TABLES

Table 4.1The fundamental periodic time in seconds for example 1 – with rotational	
stiffness	70
Table 4.2 The fundamental periodic time in seconds for example 1 – without rotational	
stiffness	70
Table 4.3 The fundamental periodic time in seconds for example 2 – without rotational	
stiffness.	
Table 4.4 The fundamental periodic time in seconds for example 2 – without rotational	
stiffness.	
Table 4.5 Section properties for example set 3 [8].	
Table 4.6 The soil properties according to work done by [8]	
Table 4.7 Time period for different modes of shape – 4 floors.	
Table 4.8 Time period for different modes of shape - 16 floors	
Table 4.9 Time period for different modes of shape - 4 floors	
Table 4.10 Time period for different modes of shape - 16 floors	
Table 4.11 Section properties according to work done by [12]	
Table 4.12 The soil properties according to work done by [12].	
Table 4.13 The fundamental time period for 6-floors multi-story framed building 1	
Table 4.14 The fundamental period for 12-floors multi-story framed building	01

LIST OF FIGURES

Figure 1.0.1(a) The effect of soil flexibility on the lateral deformation. (b) The effect	t of
neglecting soil flexibility	3
Figure 2.1 The structure of the ETABS .e2k file	17
Figure 2.2 The structure of point coordinates .txt ETABS file	18
Figure 2.3 The structure of static load cases .txt file	18
Figure 2.4 The structure Support Restraint .txt file	18
Figure 2.5 the structure of Support Reactions.txt file	18
Figure 2.6 The structure of Point Spring Force.txt file	19
Figure 2.7 Soil and boundary elements discretization for a typical raft on Winkler	
foundation	22
Figure 2.8 Soil and boundary elements discretization for a typical raft on EHS	24
Figure 2.9Flow chart show the PLPAK components	26
Figure 2.10 The structure of the model.txt file	28
Figure 2.11 The structure of the material .txt file	29
Figure 2.12 The structure of the slab .txt file	29
Figure 2.13 The structre of the soil support .txt file	
Figure 2.14 The structure of the .aip file	
Figure 2.15 The structure of the .ipu file	30
Figure 2.16 The structure of the .run file.	30
Figure 2.17 The Winkler cell discretization in the PLView	32
Figure 2.18 Practical raft on Winkler modeled using PLGen	
Figure 2.19EHSPAk add-on start menu	33
Figure 3.1 he structure of . c file.	36
Figure 3.2 The structure of the .k file	36
Figure 3.3 The structure of the LC.txt file	36
Figure 3.4 The structure of the column load.txt file	37
Figure 3.5 The structure of the \$Runstiff\$ file	37
Figure 3.6 The input and output files used by translator	38
Figure 3.7 The rotational stiffness implementation procedure	39
Figure 3.8 The structural drawings using AutoCAD	40
Figure 3.9 The ETABS 3D model	
Figure 3.10 a & b The steps to export the database file containing the required text f	
	42
Figure 3.11 The database file containing the required text files	43
Figure 3.12 The raft model in PLGEN	44
Figure 3.13 The raft model in PLVIEW.	44
Figure 3.14 Flow chart shows the proposed technique.	
Figure 3.15 The graphical user interface (SSIPAK)	
Figure 4.1. Exapmle 1 plan	
Figure 4.2 ETABS 3D modeling of example 1 super structure	
Figure 4.3 PLPAK 2D modeling of example 1 raft foundation	
Figure 4.4 SAP2000 3D modeling of example 1- Direct method	

Figure 4.5 SAP2000 3D modeling of example 1- Direct method53
Figure 4.6 Lateral Deflection in X-direction for example 1- E=2000 t/m2 (with rotational
stiffness) 54
Figure 4.7 Lateral Deflection Ratio SSI/NSSI in X-direction for example 1- E=2000 t/m2
(with rotational stiffness) 54
Figure 4.9 Drift SSI/NSSI ratio in X-direction for example 1 E=2000 t/m2 (with
rotational stiffness)55
Figure 4.8 Inter story drift in X-direction for example 1- E=2000 t/m2 (with rotational stiffness) 55
Figure 4.10 Lateral Deflection in X-direction for example 1 E=2000 t/m2 (without
rotational stiffness) 56 Figure 4.11 Lateral Deflection SSI/NSSI in X-direction for example 1 E=2000 t/m2
(without rotational stiffness)56
Figure 4.12 Inter story drift in X-direction for example 1 E=2000 t/m2 (without rotational
stiffness) 57
Figure 4.13 Drift SSI/NSSI ratio in X-direction for example 1- E=2000 t/m2 (without
rotational stiffness)57
Figure 4.15 Lateral Deflection Ratio SSI/NSSI in X-direction for example 1- E=5000
t/m2 (with rotational stiffness) 58
Figure 4.14 Lateral Deflection in X-direction for example 1- $E=5000 \text{ t/m}2$ (with rotational stiffness)58
Figure 4.16 Inter story drift in X-direction for example 1- E=5000 t/m2 (with rotational
stiffness) 59
Figure 4.17 Drift SSI/NSSI ratio in X-direction for example 1- E=5000 t/m2 (with
rotational stiffness)59
Figure 4.18 Lateral Deflection in X-direction for example 1- E=5000 t/m2 (without rotational stiffness)60
Figure 4.19 Lateral Deflection Ratio SSI/NSSI in X-direction for example 1- E=5000
t/m2 (without rotational stiffness) 60
Figure 4.20 Inter story drift in X-direction for example 1- E=5000 t/m2 (without rotational stiffness)61
· · · · · · · · · · · · · · · · · · ·
Figure 4.21 Drift SSI/NSSI ratio in X-direction for example 1- E=5000 t/m2 (without rotational stiffness)61
Figure 4.22 Lateral Deflection in X-direction for example 1- E=10000 t/m2 (without
rotational stiffness)62
Figure 4.23 Lateral Deflection Ratio SSI/NSSI in X-direction for example 1- E=10000
t/m2 (without rotational stiffness) 62
Figure 4.25 Drift SSI/NSSI ratio in X-direction for example 1- E=10000 t/m2 (without
rotational stiffness)63
Figure 4.24 Inter story drift in X-direction for example 1- E=10000 t/m2 (with rotational
stiffness)63
Figure 4.26 Lateral Deflection in X-direction for example 1- E=10000 t/m2(without
rotational stiffness)64
· · · · · · · · · · · · · · · · · · ·

Figure 4.27 Lateral Deflection Ratio SSI/NSSI in X-direction for example 1- E=10000	0
t/m2 (without rotational stiffness)	64
Figure 4.28 Inter story drift in X-direction for example 1- E=10000 t/m2 (without	
rotational stiffness)	65
Figure 4.29 Drift SSI/NSSI ratio in X-direction for example 1- E=10000 t/m2 (without	ıt
rotational stiffness)	65
Figure 4.30 Lateral Deflection in X-direction for example 1- E=20000 t/m2 (with	
rotational stiffness)	66
Figure 4.31 Lateral Deflection Ratio SSI/NSSI in X-direction for example 1- E=20000	
t/m2 (with rotational stiffness)	66
Figure 4.33 Drift SSI/NSSI ratio in X-direction for example 1- E=20000 t/m2 (with	
rotational stiffness)	
Figure 4.32 Inter story drift in X-direction for example 1- E=20000 t/m2 (with rotation	nal
stiffness)	67
Figure 4.34 Lateral Deflection in X-direction for example 1- E=20000 t/m2 (without	
rotational stiffness)	
Figure 4.35 Lateral Deflection Ratio SSI/NSSI in X-direction for example 1- E=20000	
t/m2 (without rotational stiffness)	68
Figure 4.37 Drift SSI/NSSI ratio in X-direction for example 1- E=20000 t/m2 (without rotational stiffness)	ıt
	69
Figure 4.36 Inter story drift in X-direction for example 1- E=20000 t/m2 (without	
rotational stiffness)	
Figure 4.38 Exapmle 2 plan	
Figure 4.39 ETABS 3D modeling of example 2 super structure	
Figure 4.40 PLPAK 2D modeling of example 2 raft foundation	
Figure 4.41 SAP2000 2D view	
Figure 4.42 SAP2000 3D modeling of example 2- Direct method	74
Figure 4.43 Lateral Deflection in X-direction for example 2- E=2000 t/m2 (with	
rotational stiffness)	
Figure 4.44 Lateral Deflection Ratio SSI/NSSI in X-direction for example 2- E=2000	
t/m2 (with rotational stiffness)	
Figure 4.45 Inter story drift in X-direction for example 2- E=2000 t/m2 (with rotations	al
stiffness)	76
Figure 4.46 Drift SSI/NSSI ratio in X-direction for example 2- E=2000 t/m2 (with	
rotational stiffness)	76
Figure 4.47 Lateral Deflection in X-direction for example 2- E=2000 t/m2 (without	
rotational stiffness)	
Figure 4.48 Lateral Deflection Ratio SSI/NSSI in X-direction for example 2- E=2000	
t/m2 (without rotational stiffness)	77
Figure 4.49 Inter story drift in X-direction for example 2- E=2000 t/m2 (without	
rotational stiffness)	
Figure 4.50 Drift SSI/NSSI ratio in X-direction for example 2- $E=2000 \text{ t/m}2$ (without	
rotational stiffness)	78

Figure 4.52 Lateral Deflection Ratio SSI/NSSI in X-direction for example 2- E=5000
t/m2 (with rotational stiffness) 79
Figure 4.51 Lateral Deflection in X-direction for example 2- E=5000 t/m2 (with
rotational stiffness)79
Figure 4.54 Drift SSI/NSSI ratio in X-direction for example 2- E=5000 t/m2 (with
rotational stiffness)80
Figure 4.53 Inter story drift in X-direction for example 2- E=5000 t/m2 (with rotational
stiffness) 80 Figure 4.55 Lateral Deflection in X-direction for example 2- $E=5000\ t/m2$ (without
Figure 4.55 Lateral Deflection in X-direction for example 2- E=5000 t/m2 (without
rotational stiffness)
Figure 4.56 Lateral Deflection Ratio SSI/NSSI in X-direction for example 2- E=5000
$t/m2 \ (without \ rotational \ stiffness) \ . \ 81$
Figure 4.57 Inter story drift in X-direction for example 2- E=5000 t/m2 (without
rotational stiffness)
Figure 4.58 Drift SSI/NSSI ratio in X-direction for example 2- E=5000 t/m2 (without
rotational stiffness)
Figure 4.59 Lateral Deflection in X-direction for example 2- E=10000 t/m2 (with
rotational stiffness)
Figure 4.60 Lateral Deflection Ratio SSI/NSSI in X-direction for example 2- $E=10000$ t/m2 (with rotational stiffness)83
t/m2 (with rotational stiffness)
Figure 4.62 Drift SSI/NSSI ratio in X-direction for example 2- E=10000 t/m2 (with
rotational stiffness)
Figure 4.61 Inter story drift in X-direction for example 2- E=10000 t/m2 (with rotational
stiffness)
Figure~4.63~Lateral~Deflection~in~X-direction~for~example~2-~E=10000~t/m2~(without~rotational~stiffness)85
Figure 4.64 Lateral Deflection Ratio SSI/NSSI in X-direction for example 2- E=10000
$t/m2 \ (without \ rotational \ stiffness) \ . \ 85$ Figure 4.65 Inter story drift in X-direction for example 2- E=10000 t/m2 (without
rotational stiffness)86
Figure 4.66 Drift SSI/NSSI ratio in X-direction for example 2- E=10000 t/m2 (without
rotational stiffness)86
Figure 4.67 Lateral Deflection in X-direction for example 2- E=20000 t/m2 (with
rotational stiffness)87
Figure 4.68 Lateral Deflection Ratio SSI/NSSI in X-direction for example 2- E=20000
t/m2 (with rotational stiffness)
Figure 4.69 Inter story drift in X-direction for example 2- E=20000 t/m2 (with rotational
stiffness) 88
Figure 4.70 Drift SSI/NSSI ratio in X-direction for example 2- E=20000 t/m2 (with
rotational stiffness)
Figure 4.71 Lateral Deflection in X-direction for example 2- E=20000 t/m2 (without
rotational stiffness)89
Figure 4.72 Inter story drift in X-direction for example 2- E=20000 t/m2 (without
rotational stiffness)89