Arterial Blood Gases Monitoring & Interpretation for Anesthesia

Essay

Submitted for partial fulfillment of Master Degree in Anesthesia

By

Ahmed Talaat Abd-ElHafz Abd-ElGalel

M,B,B,Ch

SUPERVISED BY

Prof.Dr. Gamal Fouad Saleh Zaki

Professor of Anesthesiology & Intensive Care Medicine

Faculty of Medicine, Ain Shams University

Dr. Heba Bahaa El-Din El-Serwi

Assistant Professor of Anesthesiology & Intensive Care Medicine
Faculty of Medicine, Ain Shams University

Dr. Rania Magdy Mohamed Ali

Lecturer of Anesthesiology & Intensive Care Medicine
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University

2014

Acknowledgement

First and foremost, I feel always indebted to **Allah**, the most beneficent and merciful.

I wish I could express my most sincere thanks, deep respect and appreciation to **Prof. Dr. Gamal Fouad Saleh Zaki,** Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for his help and professional guidance in the supervision and careful review of the work.

I would like to thank and express my gratitude to **Dr. Heba Bahaa El-Dein El-Serwi,** Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for her supervision and careful review of the work.

I would like to express my deeply thankful to **Dr. Rania Magdy Mohamed Ali,** Lecturer of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for her guidance and great support during preparation of this work.

Finally, I would like also to thank **my family** for their support during this work.

Aim of the work

This essay aims to review the current medical literature with respect to arterial blood gas analysis, including blood gas and acid-base physiology, techniques for collection, handling and analysis of arterial blood samples and interpretation of the results during perioperative period.

Table of Contents

Introduction	1
Chapter1: Physiology	4
 Acid-Base Balance 	4
 Lactate 	20
 Acid-Base Disturbance 	24
Chapter2: Techniques of Sampling & Analysis	30
A: Procedure of Sampling	30
 Description 	30
 Selection of site & Sampling techniques 	31
 Continuous In-Vivo Technique 	41
 Blood Gas Sampling Problems 	46
B: Blood Gas Analysis	51
C: Machines	59
 Technical considerations 	60
 Operational considerations 	63
 Economic considerations 	65
 Future advances 	67
Examples: Blood gas analyzers available	68
Chapter3: Clinical Significance	70
Indications	70
 Pre-operative indications 	70
 Intraoperative indications 	77
 Post-operative indications 	84
 ABG Interpretation 	87
 Assess Ventilation 	87
 Assess Acid-Base 	90
 Acid-Base Disorder Management 	105
Summary	116

List of Abbreviations

ABG Arterial blood gas

AIDS Acquired immunodeficiency syndrome

ALI Acute lung injury

ARDS Acute respiratory distress syndrome
ASA American society of Anesthesiologists

ATP Adenosine tri-phosphate

ATPase Adenosine tri-phosphatase enzyme

BB Buffer base
BD Base Deficit
BE Base excess

BE_{ecf} Base excess extracellular fluid

Ca⁺⁺ Calcium ion

CBF Cerebral blood flow

CD Compact disc CI⁻ Chloride ion

CO₂ Carbon dioxide

CoA Acetyl coenzyme a

COPD Chronic obstructive pulmonary disease
CPAP Continuous positive airway pressure

ctCO₂ Total co₂ concentration

ctO₂ O₂ content

DVD Digital versatile disc **ECF** Extra-cellular fluid

ERV Expiratory residual volume

FEV1 Forced expiratory volume in 1st second

FiO₂ Fraction of inspired oxygen
FRC Forced respiratory capacity

FVC Forced vital capacity

H⁺ Hydrogen ion

[H⁺] Hydrogen ion concentration

H₂CO₃ Carbonic acid

H₂O Water

H₂**PO**₄[−] Dihydrogen phosphate ion

Hb Hemoglobin

HCI Hydrogen chloride **HCO**₃⁻ Bicarbonate ion

HHb Deoxyhemoglobin

HPO₄⁻⁻ Hydrogen phosphate ion

K⁺ Potassium ion

LDH Lactate dehydrogenase

MCT Monocarboxylate transporter

Mg⁺⁺ Magnesium ion

mLDH Mitochondrial lactate dehydrogenase

Na⁺ Sodium ion

Na₂HPO₄ Disodium phosphate

NaH₂PO₄ Sodium dihydrogen phosphate

NaHCO₃ Sodium bicarbonate

NaOH Sodium hydroxide

NH₃ Ammonia

NH₄⁺ Ammonium ion

P(A-a)o₂ Partial pressure (Alveolar to arterial

gradiant) of O2

Paco₂ Arterial carbon dioxide tension

Pao₂ Arterial oxygen tension Pco₂ Carbon dioxide tension

PDH Pyruvate dehydrogenase complex

PE Pulmonary embolism

PEEP The positive end expiratory pressure

petco2 Partial pressure of end-tidal

carbondioxide (amount of co2 in

exhaled air)

pH Potential of hydrogen (negative log f

H+)

pHi Intramucosal *p*H

PIOPED Prospective investigation of pulmonary

embolism diagnosis

pK the negative logarithm of the ionization

constant (K) of an acid

Po₂ Oxygen tensionQC Quality controlRV Residual volume

SaO₂ Arterial o2 saturation (measured

directly by arterial sample)

SB Standard bicarbonate SO₂ Percent o₂ saturation

SvO2 Mixed venous oxygen saturation

TLC Total lung capacity

TURP Trans-urethral resection of prostate

V/Q Ventilation/perfusion ratio

VC Vital capacity

Vt Exhaled tidal volume

Spo2 Blood o₂ saturation (measured

indirectly by pulse oximeter)

Δa change in alveolar ventilation

List of Tables

Table (1): Relationship between <i>pH</i> and H ⁺	5
Table (2): Normal arterial blood gas value	5
Table (3): Examples for Blood gas analyzers	68
available	
Table (4): Pulmonary effects of aging	71
Table (5): Preoperative measurements or predictions	74
for various sized pulmonary resection	
Table (6): Gastrointestinal causes of metabolic	76
acidosis and alkalosis	
Table (7): causes of increased paCO ₂ during	81
laparoscopy	
Table (8): Assessing hypoxaemia severity	88
Table (9) represents a summary of changes in pH,	92
PaCO ₂ , HCO3 ⁻ in acid-base disorders	
Table (10): Determinants of the Anion Gap	96
Table (11): Interpretation of the Anion Gap (AG)	98

List of Figures

Figure (1): Change in extracellular fluid <i>pH</i> caused	13
by increased or decreased rate of alveolar	
ventilation expressed as times normal	
Figure (2): Reabsorption of bicarbonate in	15
different segments of the renal tubule	
Figure (3): lactate shuttle hypothesis	23
Figure (4): Puncture of superficial temporal artery	36
Figure (5): Anatomy of the right hand and wrist.	37
Figure (6): Modified Allen test	37
Figure (7): Radial puncture	38
Figure (8): The left femoral triangle	41
Figure (9): pH electrode system.	53
Figure (10): pCO ₂ electrode system.	54
Figure (11): pO ₂ electrode system.	55
Figure (12): The relationship between CBF and	78
PaCO ₂	
Figure (13): Assessing pulmonary gas exchange	88
Figure (14): Acid-Base interpretation approach	93

Introduction

Introduction

The introduction of electrochemical methods of analysis was in the mid-1900s; afterwards Donald D. van Slyke developed a more accurate manometric method, which became the gold standard of blood gas analysis for more than a quarter of a century. (Severinghaus et al, 1998)

Arterial blood gas (ABG) analysis is now common place in perioperative and acute-care settings and is used to aid diagnosis and to monitor the progress of the patient and the response to any interventions. It is essential that staff working in the perioperative environment understands the key principles of ABG analysis so that results can be dealt with quickly and appropriately (Simpson, 2004) as ABG is one of the most common tests performed in theatres (Jevon et al, 2002).

Arterial blood gases will provide a set of values that can be used to determine key aspects of the patient's condition. These values can be broadly categorized into oxygenation status, adequacy of alveolar ventilation and acid-base balance (Fitz-Henry et al, 2001). Normal cellular function is dependent on the *p*H being held within an extremely narrow range. Nevertheless, during acute illness in the perioperative period, if the body is unable to

correct an abnormality of the *pH* this may eventually lead to such profound disturbance of acid-base balance that the patient could die (**Moore**, **2000**).

Accurate results for ABGs depend on collecting, handling, and analyzing the specimen properly. Clinically important errors may occur at any of these steps. The most common problems include non-arterial samples, air bubbles in the sample, either inadequate or excessive anticoagulant in the sample, and delayed analysis of an uncooled sample (Trulock, 2000).

ABGs are now routinely measured with an automated analyzer. The basic components of such a unit are three electrodes, one each for determining IH, PCO₂, and PO₂ (Trulock, 2000). Continuous In-Vivo Techniques (*Miniature Electrode Systems*) can be used to continuously monitor in-vivo PO₂. (Friedman et al, 2000). The goal of future blood gas systems is to provide continuous, non-invasive, and accurate readouts of both the acid-base and oxygenation status of the patient (Hess, 2000).

Transcutaneous blood gas analysis would not be satisfactory in adults due to their thicker epidermis. (Carter, 2011) It shouldn't to be left in one place on the baby's skin for too long. (Wright et al, 1993) Oximetry readings may be inaccurate in the presence of hemodynamic instability, carboxy-hemoglobinemia,

jaundice, or dark skin pigmentation. Also it can't detect hypercapnia or acidosis. (Pierson, 1999) In sidestream capnometry water vapor condenses in the sample tubing and the measuring chamber and produce erroneous readings. Response time is delayed. (Miller et al, 2009) In mainstream capnometery avoid skin contact with the warmed (40°C) measuring chamber. It is heavy to the circuit and may cause kinking of the endotracheal tube. It is prone to soiling with saliva or mucus because of their close proximity to the patient. (Miller et al, 2009)

Physiology

Physiology

For regulation of hydrogen ion [H⁺] balance there must be a balance between the intake or production of [H⁺] and the net removal of [H⁺] from the body. And the kidneys play a key role in regulating [H⁺] removal. There are also multiple acid-base buffering mechanisms involving the blood, cells, and lungs that are essential in maintaining normal [H⁺] concentrations in both the extracellular and the intracellular fluid (**Guyton et al, 2006**).

pΗ

pH is the negative logarithm of the [H⁺] ion concentration and the pH range compatible with life is (6.8–7.8), corresponds to a [H⁺] concentration of 10–160 nmol/l. The concentration of free [H⁺] in plasma is small approximately 40 nmol/l. (**Gennari et al., 2005**) pH is related to the actual [H⁺] concentration by the following formula:

$$pH = log \frac{1}{H_{+}} = -log [H^{+}]$$

Therefore, the normal $pH = -\log [0.00000004] = 7.4$

Small change in pH represents a relatively large change in $[H^+]$ in the opposite direction (inversely related). A pH change of 0.3 units is equivalent to doubling or