Correlation between Peri-Procedural B-Type Natriuretic Peptide Plasma Levels and Success of Percutaneous Balloon Mitral Valvuloplasty

Thesis

For Partial Fulfillment of Master Degree in Cardiology

Submitted by

Fatema Al-zahraa Saeed Korany Mohammad

M.B.B.Ch.

Supervised By

Dr. Hani Mohammed Ahmed Awadallah

Assist. Prof. of Cardiology Faculty of medicine – Ain Shams University

Dr. Sameh Samir Raafat Naguib

Assist. Prof. of Cardiology Faculty of medicine – Ain Shams University

Dr. Ahmed Fouad Sarwat

Lecturer of Cardiology
Faculty of medicine – Ain Shams University

Faculty of medicine Ain Shams University 2017

List of Content

SECTION I Review of literature	1
Chapter 1: Mitral Stenosis	2
Overview	2
Normal Mitral Valve Morphology and Function	3
Pathophysiology of Rheumatic Mitral Stenosis	
RF and incidence of MV affection	4
Interval between Acute RF and MV obstruction	4
Pathological process	5
Changes in valve architecture	5
Impairment of valve function	6
Valve anatomy scoring	6
◆Left atrial changes	9
Hemodynamics in MS	9
Patient evaluation	13
Diagnostic studies	14
Management strategies	17
Chapter 2: Percutaneous Balloon Mitral Valvuloplasty	19
Overview	19
Procedure	20
Consequences of PMBV	24
Predictors of Outcomes and Patient Selection	26
Chapter 3: B-Type Natriuretic Peptide	27
Overview	27
Biochemical structure and properties	
Receptors and mode of action	
Physiological considerations	31
Normal and abnormal values	32
BNP in cardiovascular practice	34
SECTION II Aim of the work	39

SECTION III Patients and methods	.41
SECTION IV Results	.52
SECTION V Discussion	.64
SECTION VI Conclusion	.75
SECTION VII Summary	.77
SECTION VIII Limitations and recommendations	.81
SECTION VIII References	.83
SECTION IX Arabic summary	

Acknowledgement

FIRST OF ALL, THANKS TO ALLAH

I owe my greatest gratitude tomy thesis supervisors for their patient guidance, enthusiastic encouragement and useful critiques in this research work. I would like to express my deep gratitude to **Dr. Hani Awadallah**, Assistant Professor of cardiology, for participation and assistance until the work has been successfully fulfilled.

I would like to express my great appreciation to **Dr. Sameh Samir Naguib**, Assistant Professor of cardiology, for his valuable and constructive suggestions during the planning and development of this research work. He consistently allowed this thesis to be my own work, but steered me in the right direction whenever he thought I needed it.

I am immensely grateful to **Dr. Ahmed Fouad Sarwat**, Lecturer of cardiology, for his meticulous supervision, untiring guidance, and assistance in keeping my progress on schedule. His willingness to give his time so generously has been very much appreciated.

Finally, my cardinal thanks to my family for providing me with unfailing support throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

Thank you.

Fatema Alzahraa Saeed

List of Abbreviations

2D Two-dimensional

ACC American College of Cardiology

AF Atrial fibrillation

AHA American Heart Association

ANP Atrial/A-type natriuretic peptide

BMV Balloon mitral valvuloplasty

BMI Body mass index

BNP Brain/B-type natriuretic peptide

CNP C-type natriuretic peptide

CO Cardiac output

CP Constrictive pericarditis

CW Continuous wave

DB Double balloon

DNP Dendroaspis/D-type natriuretic peptide

ECG Electrocardiography

EDTA Ethylene-Diamine-Tetra-Acetic acid

EF Ejection fraction

ELISA Enzyme-Linked Immuno-Sorbent Assay

FAC Fractional area change

HF Heart failure

HRP Horseradish peroxidase

IVC Inferior vena cava

LA Left atrium/atrial

LA td max Maximal left atrial transverse diameter

LAA max Maximal left atrial area

LAA min Minimal left atrial area

LAFI Left atrial function index

LAP Left atrial pressure

LAV max Maximal left atrial volume

LAV min Minimal left atrial volume

LV Left ventricle/ventricular

LVEDD Left ventricular end diastolic diameter

LVEDV Left ventricular end diastolic volume

LVESD Left ventricular end systolic diameter

LVESV Left ventricular end systolic volume

mLAP Mean left atrial pressure

MR Mitral regurgitation

MS Mitral stenosis

MV Mitral valve

MVA Mitral valve area

MVR Mitral valve replacement

NP Natriuretic peptide

NPR Natriuretic peptide receptor

NT-proBNP N-terminal pro B-type natriuretic peptide

NYHA New York Heart Association

PAP Pulmonary artery pressure

PASP Pulmonary artery systolic pressure

PH Pulmonary hypertension

PHT Pressure half-time

PM Papillary muscles

PMBC Percutaneous mitral balloon commissurotomy

PMBV Percutaneous mitral balloon valvuloplasty

PVR Pulmonary vascular resistance

PW Pulsed wave

RA Right atrium/atrial

RA td max Maximal right atrial transverse diameter

RAA max Maximal right atrial area

RAA min Minimal right atrial area

RAV max Maximal right atrial volume

RAV min Minimal right atrial volume

RCMP Restrictive cardiomyopathy

RF Rheumatic fever

RHD Rheumatic heart disease

r.p.m Revolution/rotation per minute

RV Right ventricle/ventricular

SD Standard deviation

TAPSE Tricuspid annular plane systolic excursion

TEE Transesophageal echocardiography

TTE Transthoracic echocardiography

List of Tables

No.	Title	Page
1	Assessment of Mitral Valve Anatomy According to the Wilkins Score.	7
2	Assessment of Mitral Valve Anatomy According to the Cormier Score.	7
3	Stages of Mitral Stenosis.	11
4	Summary of PMBV Indications according to ACC/AHA guidelines 2014.	18
5	Summary of Contraindications of PMBV (ACC/AHA guidelines 2014).	25
6	Causes of abnormal NP levels.	33
7	Change in hemodynamic parameters before and after successful and unsuccessful PMBV.	55
8	Correlation between BNP level and other parameters before PMBV.	57
9	Correlation between BNP leveland other parameters afterPMBV.	58
10	Change in plasma BNP level before and 20 minutes after successful and unsuccessful PMBV.	59
11	Change in plasma BNP level before and 12 hours after successful and unsuccessful PMBV.	60
12	Correlation between plasma BNP level changes and changes in other parameters after PMBV.	61

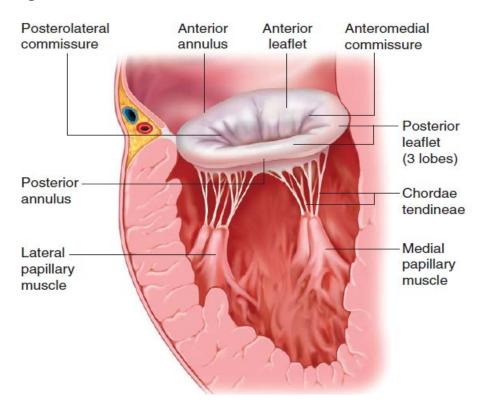
List of Figures

No.	Title	Page
1	Continuity of the mitral apparatus and the left ventricular myocardium.	3
2	Rheumatic stenotic MV; "fish mouth" appearance.	6
3	A: Parasternal long-axis view showing doming of the anterior leaflet. B: Parasternal short-axis view showing narrowing of mitral orifice.	15
4	Left atrial enlargement in MS. Transthoracic echocardiography, apical 4-chamber view.	16
5	Double balloon technique for percutaneous mitral balloon valvotomy.	20
6	A: Single balloon technique (the major force is directed toward the leaflet). B: Double balloon technique (the force is directed toward the commissures).	21
7	Metallic commissurotomy technique.	22
8	Inoue balloon technique for percutaneous mitral balloon valvotomy.	23
9	Transthoracic echocardiographyshowing the wire crossing the MV during PMBV.	23
10	Natriuretic peptide structure.	29
11	Natriuretic peptide synthesis.	30
12	Natriuretic peptide receptors and mechanism of action.	31

No.	Title	Page
13	Continuous doppler of MV inflow: determination of transmitral pressure gradient and pressure half time.	45
14	Apical 4-chamber view showing maximal left atrial volume and minimal left atrial volume.	46
15	Procedural outcome of PMBV.	53
16	Changes in MVA, mLAP, PG, RVSP, PASP, and LVEDP after successful PMBV.	55
17	Changes in MVA, mLAP, PG, RVSP, PASP, and LVEDP after unsuccessful PMBV.	55
18	Pattern of periprocedural BNP change insuccessful and unsuccessful PMBV.	59
19	Correlation between plasma BNP level change "BNP ₂ -BNP ₁ " and mLAP change.	61
20	Correlation between plasma BNP level change "BNP ₂ -BNP ₁ " and LVEDP change.	61
21	Correlation between plasma BNP level change "BNP ₂ -BNP ₁ " and MVA change.	62
22	Correlation between plasma BNP level change "BNP ₂ -BNP ₁ " and LAFI change.	62
23	Correlation between plasma BNP level change "BNP ₂ -BNP ₁ " and TAPSE change.	63

Chapter 1 Mitral Stenosis

Overview


Rheumatic heart disease (RHD) remains the main etiology of mitral stenosis (MS) even in the developed countries, despite the marked reduction in the incidence of rheumatic fever (RF) in the last decades. Antibiotic use almost certainly plays a role, but the decline in disease incidence began before antibiotics were widely available, suggesting that socioeconomic factors also play a key role in the disease process. In addition, the organism responsible (group A *Streptococcus*) itself may have mutated to a less rheumatologic agent.

Both the prevalence of RHD and the age at which patients present with severe MS, show a geographic variability. In North America and Europe, patients present with severe valve obstruction in the sixth decade of life, whereas in Africa, with higher disease prevalence, severe disease often is seen in younger age. ⁴This distribution has given an evidence supporting recurrent infection as an important factor in disease progression.

MS can be, less commonly, due to non-rheumatic causes as congenital malformation and degenerative mitral annular calcification with extension onto the leaflets.³ It may develop as a complication of malignant carcinoid disease, systemic lupus erythematosus, rheumatoid arthritis, Fabry disease, Whipple disease, mucopolysaccharidosis of the Hunter-Hurler phenotype.⁴ Radiotherapy, methysergide therapy and restrictive mitral valve repair for mitral regurgitation (MR) are also causes for MS.³

Normal Mitral Valve Morphology and Function:

Normal mitral valve (MV) function and mechanics depend on the structural integrity and coordinated action of the anatomic components of the mitral apparatus (Fig. 1) along with the adjacent left ventricular and atrial myocardium. The MV annulus is asymmetrical, with a fixed portion (corresponding to the anterior leaflet) shared with the aortic annulus and a dynamic portion (corresponding to the posterior leaflet) that represents most of annular circumference.⁵

Figure 1:Continuity of the mitral apparatus and the left ventricular myocardium. (*From Otto CM: Evaluation and management of chronic mitral regurgitation.N Engl J Med 345:740, 2001.*)

The two leaflets are also asymmetrical; the anterior leaflet has the greater length but occupies a smaller portion of the annulus circumference than the posterior. Both leaflets come together in two distinct areas; commissures. Two papillary muscles (PM), anterolateral and posteromedial, attach the mitral apparatus

to the left ventricle (LV) via chordae tendinae which join each PM to the corresponding commissure and the adjoining parts of both leaflets, allowing coaptation of the two leaflets during systole.⁵

Pathophysiology of Rheumatic Mitral Stenosis

• RF and incidence of MV affection:

In RHD, all four valves may become damaged, nevertheless the MV is virtually always affected, but the reasons for this propensity are unclear. Perhaps greater mechanical stress on the MV causes the inflammatory process to be manifested more severely there than on other valves.³ About 25% of all patients with RHD have isolated MS, and about 40% have combined MS and MR. Multivalvular involvement is seen in 38% of MS patients, with the aortic valve affected in about 35% and the tricuspid valve in about 6%.⁴

• Interval between acute RF and MV obstruction:

The interval between the initial episode of RF and clinical evidence of MV obstruction is variable, ranging from a few years to more than 20 years, with more rapid disease progression in patients in areas with relative prevalence of RF and lack of prevention, due to recurrent episodes of valve scarring. The initial episode causes inflammation, thickening, and retraction of leaflets, usually causing mild MR, which may disappear as the attack subsides. Later on, MS can develop with 2 important factors contributing to this process: the severity of carditis in the first attack, and the number of subsequent attacks. In case of little evidence of valvulopathy and no subsequent attacks occurring after the initial one, the chance that the patient will develop severe MS later in life is probably less than 5%.

• Pathological process:

It is clear that rheumatic fever causes the disease; nevertheless, a debate continues about the exact pathologic processes that occur between the initial attack of acute rheumatic fever and eventual development of MS (when it does occur). Rheumatic and traumatic processes and perhaps superimposed calcification are assumed to be involved.⁷

It may be that the initial insult to the MV is rheumatic; a chronic autoimmune process caused by cross-reactivity between a streptococcal protein and valve tissue generating an inflammatory response in the three cardiac layers i.e. pancarditis, with the endocardium, from which the cardiac valves are derived, that is most severely affected. The later changes may be from the additional hemodynamic stress and valve trauma, that caused by altered flow patterns due to the initial deformity, leading to continued inflammation and scarring. C-reactive protein was found to be elevated in many MS patients, indicative of ongoing inflammation from either or both processes. Superimposed calcific valve disease is assumed by the observation that restenosis after mitral valvuloplasty is caused by leaflet thickening and fibrosis rather than recurrent commissural fusion. 9

• Changes in valve architecture:


With acute rheumatic fever, there is inflammation and edema of the leaflets, with small fibrin-platelet thrombi along the leaflet contact zones. Subsequent scarring leads to obliteration of the normal leaflet architecture and the characteristic rheumatic mitral valve deformity (Fig. 2) including leaflet thickening by fibrous tissue and/or calcific deposits, fusion of the commissures, and chordal shortening and fusion.⁴

• *Impairment of valve function:*

In earlier stages of the disease, the relatively flexible leaflets open in diastole into a curved shape because of restriction of motion at the leaflet tips. This diastolic doming is most evident in the motion of the anterior leaflet and is less prominent as the leaflets become more fibrotic and calcified.⁴

The symmetrical commissural fusion results in a small central oval orifice in diastole that on pathologic specimens is shaped like a fish mouth or buttonhole because the anterior leaflet is not in the physiological open position (Fig. 2).

Superimposed calcification immobilizes the leaflets and narrows the orifice further. With endstage disease, the thickened leaflets may be so adherent that they cannot open or shut, leading to combined MS and MR.⁴

Figure2:Rheumatic stenotic MV; "fish mouth" appearance. (From Otto CM: Valvular Heart Disease. Elsevier, Philadelphia, 2004.)

• Valve anatomy scoring:

Aiming at better patient selection for therapeutic options, different approaches have been developed to combine the different anatomical features of MS. The most widely used scoring system is the Wilkins score (Table 1), which combines leaflet mobility, thickness, calcification, with subvalvular apparatus scarring in a 16-point scale. The total score is the sum of the four items and ranges between 4 and 16.¹⁰