

Ain Shams University Faculty of Engineering

Electronics and Communications Engineering Department

Design of PV System to Power BTS Unit

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of

Master of Sciencein Electrical Engineering

Submitted By

Khaled Hossam Youssef Abd Elhamid

Supervised By

Prof. Dr. Wagdy Refaat Anis

Professor in the Electronics and Communications Engineering Department Faculty of Engineering – Ain Shams University

Prof. Dr. Ismail Mohamed Hafez

Professor in the Electronics and Communications Engineering Department Faculty of Engineering – Ain Shams University

Ain Shams University Cairo – Egypt 2016

Ain Shams University Faculty of Engineering

Electronics and Communications Engineering Department

Name: Khaled Hossam Youssef Abd Elhamid

Thesis: Design of PV System to Power BTS Unit

Degree: Master of Science in Electrical Engineering

Examiners Committee

Name and Affiliation	Signature
Prof. Dr. Salah Sayed Ibrahim Elagooz Shrouk Academy, Faculty of Engineering, Electronics and Communications Engineering Dept.	
Prof. Dr. Abdelhalim Abdelnaby Zekry Ain Shams University, Faculty of Engineering, Electronics and Communications Engineering Dept.	
Prof. Dr. Ismail Mohamed Hafez Ain Shams University, Faculty of Engineering, Electronics and Communications Engineering Dept.	
Prof. Dr. Wagdy Refaat Anis Ain Shams University, Faculty of Engineering, Electronics and Communications Engineering Dept	

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering.

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name	: Khaled HossamYoussef
Signature:	
Date	: /

CURRICULUM VITAE

KHALED HOSSAM YOUSSEF

CAIRO, EGYPT KHFKHALID@GMAIL.COM KHFKHALID@YAHOO.COM

Electronics and Communication Engineer

01148878884 01022988461

Profile

I am A highly motivated individual with a keen eye for detail. I am looking for an opportunity to prove my worth and advance my career as far as possible. I consider myself to be an effective team player with excellent leadership skills and an analytical approach to the solving of problems. My experience includes high pressure management roles, implementation of new use of operating systems, products and sales techniques. I am fully experienced with the recruitment processing and candidate selection. I believe given a chance I would become an asset to any company immediately

Skills

ICDL MS Office Suite

MCSE

EDUCATION

Electronics and communication, Master of Engineering August 2011 – Present

server 2003.

Windows XP. Windows

Ain-Shams University, Cairo, Egypt

ISA 2006.

Studies focused in advanced electronic and communication .and I will focus in network communication security. And I will build a new strategy of communication security.

Implementing and Administering Security.

Electronics and communication, Bachelor of Engineering 2005 - May 2009

August

Planning and

High Institute of Engineering, El shrouk, Egypt

EXPERIENCE

Average Grade: Good

Maintaining a Windows Server 2003.

Specialized in different types of electronics analog and digital, use the suitable methods to measure it's output and work in PCB boards. Also Specialized in different types of communication digital and analog, Computer networks and computer network security.

Programming

Site Engineer, Alkan networks

VHDL

February 2012 - Present

C C++ C#

Company name, Alkancit, Cairo

A Specialist company which work as sub-contractor for Ericsson which work with different jobs in Vodafone and Etisalat.

Certifications

Position: Site Engineer.

ICDL

Duties: >Install new BTS stations (2G, 3G and Transmission).

DDL Edexcel

> Filed maintenance engineer which responsible to fix any down telecom devise as (2G, 3G, Transmission and ISP) in my location area inside BTS station or BSC stations.

-Undertake learning Needs analysis.

-Deliver learning

Lab engineer trainer, ITEC (Edexcel)

November 2010 - Jan 2012

Cluster Name, Amerria, Cairo

-Develop Assessment Practice.

programmers.

A Specialist technical training cluster that focuses in a vocational education system and it belong to Edexcel in England management rules.

-Manage Review AND Evaluation.

Position: Teaching + maintaining the lab.

Duties: >Teaching to learners the healthy and safety in workshops.

-Maintain Professional

> Teaching all the components and machines

Practice.

>> Teaching the steps they will follow it to test the electronic system > Making observation in their work and give them effective feedback.

> -Quality Assuring Vocational Qualifications.

> Deliver their results to the cluster manager. > If there any problem in the lab I will fix it.

Technical support engineer, Dataonline.com

November 2009 - September 2010

C# programming language.

Company Name, Data online, Cairo

Satellite communicatio n.

A Specialist company which work in build systems and deliver technical support to other systems which include computers, networks, faxes, centrals and mobiles networks all of that are connected with each other by using servers to manage all of that.

Microcontrolle

Position: Technical support engineer.

programming (ATMEL).

Duties: >Ask the customer about their system's problem.

- > Test the system instructions and find the problem.
- > Tell the customer how it will be cost.
- > Fixing the problem then delivering contract of maintenance.
- > Visiting the customer once a month.

Technical Engineer, Triple A

August 2009 - November 2009

Company Name, Triple A, Cairo

A legal organization that specializes in producing the electronic boards and fixing the damage in the electronic boards.

> Test the electronic boards with the professional ways.

Position: Test the electronic boards + Fix the electronic boards. **Duties:**

- > Cold calling and responding to inbound enquiries.
- > Deliver my best solution with a little cost.
- > Development and integration of new products.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude, appreciation and thankfulness to **Prof. Dr. Eng. Wagdy Refaat Anis** for his permanentkeenness to provide advice, support, encouragement, assistance and guidance throughout the entire thesis. In fact, he provided me with his wide knowledge and experience, lots of valuable ideas and many stimulating suggestions. Really, I will never forget the research memorizes with him. From the son and the pupil to the father and the dear professor, "I shall never forget your help, and I shall always remember your kindness."

I would like to express my sincere gratitude, appreciation and thankfulness to **Prof. Dr. Eng. Ismail Mohamed Hafez** for his supervision, advice, support, guidance and help to me, especially in the last stage of this thesis. Indeed, he inspired me a sense of enthusiasm, optimism and motivation. Actually, I consider him as a role model to promote to senior positions in the future.

I would like to show my deepest gratitude, appreciation and thankfulness to Prof. Dr. Eng. Abdelhalim Abdelnaby Zekry for his support, guidance, help and reviewing this thesis. In fact, I learned so many valuable ideas, scientific guidance and technical comments from his wide experience. Actually, he taught me how to evaluate and show work's originality, then present at it in the best form.

I would like to offer my deepest gratitude, appreciation and thankfulness to Prof. Dr. Salah Sayed Ibrahim Elagouz for his kindness, support, help and reviewing this thesis. Indeed, it is a great opportunity to learn from his wide knowledge in the solar-energy field and how to prepare a simple and organized thesis. Really, I learned from him how to be a simple and humility person.

I can't forget to thank my great grandfather **Abd el fath abd el hamid heagzy** (**Allah** mercy on him) who was endless sources of advice, guidance and help. I pray to **Allah** to grant him his mercy, satisfaction and paradise.

I wish to express my deepest thanks to my dear friends and brothers Eng. Belal Yousef (M.Sc.) and Eng. Mohamed Nageh (M.Sc.) For their continuous encouragement, support and help.

Khaled Hossam

2016

ABSTRACT

The problem of providing electrical energy to mobile BTS stations either in remote or urban areas may be solved to the greatest extent if renewable-energy sources are used. In remote areas, where electric utility isn't available, photovoltaic (PV) stand-alone system, using storage batteries represented a good solution, although it is expensive. In urban areas, PV on the grid system is an economical solution. In such a system, during sunshine hours the power generated by PV system supplies a part of its energy to BTS station, and the rest of the energy is supplied to grid utility. During the night where no solar-energy is available, the system is supplied by grid utility, i.e. you get back during the night, the energy supplied during the day to the grid. It is also possible to have a hybrid system using a diesel generator combined with PV to supply BTS stations in remote areas. The economics of the different proposed systems are the criterion of selecting the optimum system in Egypt. The major criterion is the cost per generated kWh is the crucial rule to decide which system is optimized. This work considers every above system.

Keywords:

Base Transceiver Station (BTS), photovoltaic (PV), Power Supply Unit (PSU), Battery Fuse Unit (BFU), Array factor (F_A). State Of Charge (SOC), Automatic Transfer Switch (ATS), Diesel Generator (DG).

Published paper:

Khaled Hossam, Dr. Adel R. Mikhail, Dr.Ismail M. Hafez and Dr. Wagdy R. Anis "Optimum design of PV systems for BTS in remote and urban areas," International Journal of scientific &technology research, Vol.5, pp.355-363, ISSN 2277-8616, June 2016.

.

SUMMARY

This thesis discusses one of the hotspot topics in powered base transceiver station(BTS) with different systems. All these systems focus on using renewable-energy source as PV solar-energy source in urban and remote areas. Also, design of each system depends on BTS loadsand BTS configuration. Systems are simulated by Math-Lab programs with measured indoor and outdoor BTSs loads in Cairo Egypt. Economics is calculated for each system.

Chapter one:It discusses short introduction about BTS, BTS configuration system, overview of PV solar-energy source and problem facing powered BTS.

Chapter two:It discusses short introduction about the components of BTS, two examples of BTS loads are discussed. Different proposed systems used to power BTS loads with the block diagram for each system are studied. Moreover, an overview about publishing papers concerning BTS power systems is included.

Chapter three:It discusses system modules for different solutions used to operate BTS loads overall the year and simulation Math-Lab program design for each system. With the effects of climatic conditions, solar irradiance, temperature, cloudy days, tilt angles and the energy output of the PV array. PV module characteristic is included in the simulation program.

Chapter four:It discusses overview economies calculations in US dollar (\$) for each system model according to mobile operator's requirements and international market prices.

Chapter five: It contains conclusions and future work for this thesis.

This thesis includes five appendices and they are appendix (A) Simulation program to calculate energy generated from PV system, Appendix (B) Simulation Program For on the grid PV system, Appendix (C) Simulation program of Stand-Alone system, Appendix (D) Simulation program for hybrid PV and diesel generator systemand the appendix (E) Simulation program for Stand-Alone and diesel generator running at cloudy days.

TABLE OF CONTENTS

STAT	EMENT	X
CURR	RICULUM VITAE	XI
ACKN	IOWLEDGEMENT	XIII
ABST	RACT	XIV
SUMN	MARY	xv
TABL	E OF CONTENTS	XVI
LIST	OF FIGURES	XIX
LIST	OF TABLES	XVII
LIST	OF ABBREVIATIONS	XIX
LIST	OF SYMBOLS	xıx
СНАР	TER 1: Specifications of the power supply for BTS	2
1.1	Base Transceiver Station	2
1.2	BTS configuration types	3
1.3	Solar-energy source as renewable-energy powering BTS	4
1.4	The problems facing powered BTS	7
СНАР	TER 2: BTS loads and proposed systems to power it	10
2.1	BTS powering components	10
2.2	Proposed systems to power BTS	13
2.2	2.1 Single AC energy source system	13
2.2	2.2 Hybrid AC energy source system	14
2.2	2.3 On grid PV system (Compensated System)	15
2.2	2.4 Stand-alone PV system	18
2.2	2.5 Hybrid energy system components	19
2.3	Simulation general Parameters and model validation	22
CHAP	TER 3: Detailed systems models for different solutions	32
3.1	Select the PV module type to power BTS in next systems	33

3.2 Indoor and Outdoor BTS loads case study	35
3.2.1 Experiment setup.	35
3.2.2 Indoor and Outdoor BTS load measurements	40
3.3 On grid PV system (Compensated system)	44
3.3.1 Design strategy and simulation	45
3.3.1.1 Outdoor BTS	45
3.3.1.2 Indoor BTS	50
3.3.2 Advantage and disadvantage for on grid PV system	54
3.4 Stand-alone PV systems	55
3.4.1 Design strategy and simulation.	56
3.4.1.1 Indoor BTS	56
3.4.1.2 Outdoor BTS	60
3.4.2 Advantage and disadvantage	64
3.5 Hybrid PV and diesel generator system	65
3.5.1 Design strategy and simulation.	66
3.5.1.1 Indoor BTS	66
3.5.1.2 Outdoor BTS	68
3.5.2 Advantages and disadvantages	70
3.6 Stand-alone and diesel generator running on the cloudy days only syst	:em . 71
3.6.1 Design strategy and simulation	73
3.6.1.1 Indoor BTS	73
3.6.1.2 Outdoor BTS	76
3.6.2 Advantages and disadvantages	80
CHAPTER 4: Economical details of proposed different PV systems	82
4.1 Economic present value (P) calculations	82
4.1.1 Uniform payments	82
4.1.2 Geometric series payments	84
4.2 Economic considerations	87
4.3 Economic calculations for each proposed PV systems	88
4.3.0.1 Indoor BTS Economics for on grid utility only system	88
4.3.0.2 Outdoor BTS Economics for on grid utility only system	90
4.3.1 Economics for on grid PV systems	91
4.3.1.1 Indoor BTS Economics for on grid PV system	91
4.3.1.2 Outdoor BTS Economics for on grid PV system	92
4.3.2 Economics for Stand-alone PV systems	94
4.3.2.1 Indoor Economics for Stand-alone PV system	Q/I

4.3.2.2 Outdoor Economics for Stand-alone PV system	95
4.3.3 Economics for hybrid PV and diesel generator systems	97
4.3.3.1 Indoor Economics for hybrid PV and generator system.	98
4.3.3.1 Outdoor Economics for hybrid PV and generator system	99
4.3.4 Economics for stand-alone and diesel generator running on the cloudy day only system	-
4.3.4.1 Indoor Economics for Stand-alone PV and diesel generator running on the cloudy day's system	. 102
4.3.4.1 Outdoor Economics for Stand-alone PV and diesel generator running on the cloudy day's system	
CHAPTER 5: Conclusion and future work	108
5.1 Conclusion	. 108
5.2 Future Works	. 108
REFERENCES	109
APPENDIX (A)	111
Simulation program to calculate Energy generated from PV system	111
APPENDIX (B)	116
Simulation Program For on grid PV system	116
APPENDIX (C)	123
Simulation program of Stand-Alone system	123
APPENDIX (D)	129
Simulation program for hybrid PV and diesel generator system	130
APPENDIX (E)	137
Simulation program for Stand-Alone and diesel generator running at cloudy	/
davs	137

LIST OF FIGURES

Fig. 1.1 Structure of the mobile network	2
Fig. 1.2 Indoor BTS	3
Fig. 1.3 Outdoor BTS	3
Fig. 1.4 PV module equivalent circuit	4
Fig. 1.5 Solar module	6
Fig. 1.6 I-V characteristics of PV modules	6
Fig. 1.7 P-V characteristics of PV modules	6
Fig. 2.1 General powered BTS component units	10
Fig. 2.2 Single AC energy source system	13
Fig. 2.3 Hybrid AC energy sources system	14
Fig.2.4 On grid PV system without batteries	15
Fig.2.5 On grid PV system with batteries	16
Fig. 2.6 Stand-Alone PV system	17
Fig. 2.7 General hybrid energy system block diagram	18
Fig.2.8 General wind energy system block diagram	19
Fig.2.9 Hybrid PV with diesel generator block diagram	20
Fig.2.10 Solar declination angle (δ) varies during the months	21
Fig.2.11 Latitude and longitude	22
Fig.2.12 V _{OC} and I _{SC} from I-V Characteristic for solar module	23
Fig.2.13 Effect of tilt angle at energy generated by one kW _p PV array size	26
Fig. 2.14 Comparison between simulation and the measured values of 40kW _p PV array size	28
Fig. 3.1 PV module's output average daily energy overall year for one kW _p array size.	33
Fig. 3.2 The PV array connections to generate -48 V DC	34
Fig. 3.3a Rectifier cabinet PBC6500.	35

Fig. 3.3b Sample of battery strings connection	36
Fig. 3.4 Print screen from Ericsson PBC 6500 in indoor BTS	37
Fig. 3.5a Outdoor BTS Ericsson RBS 6102	37
Fig. 3.5b Rectifier component at Ericsson RBS 6102	38
Fig. 3.6 Print screen from Ericsson RBS 6102 in outdoor BTS	39
Fig. 3.7 Average daily energy required to operate Indoor BTS loads	41
Fig. 3.8 Average daily energy required to operate Outdoor BTS loads	43
Fig. 3.9 On grid PV system	44
Fig. 3.10 Variation of β in degree and E_o output energy in 10 kWh/year	47
Fig. 3.11 Monthly average daily energy for on grid PV system for outdoor BTS with fixed tilt angle	47
Fig. 3.12 Monthly average daily energy for on grid PV system for outdoor BTS with manually tracking	50
Fig. 3.13 Variation of $β$ in degree and E_0 output energy in kWh/year	52
Fig. 3.14Monthly average daily energy for on grid PV system for indoor BTS with fixed tilt angle	53
Fig. 3.15 Monthly average daily energy for on grid PV system for indoor BTS with manually tracking	53
Fig. 3.16 Stand-alone PV system	55
Fig. 3.17 Monthly average daily energy for stand-alone system for indoor BTS	
with fixed tilt angle	58
Fig. 3.18. Monthly average daily energy for stand-alone system for indoor BTS with fixed manually tracking	58
Fig. 3.19 SOC per year stand-alone system for indoor BTS with battery strings size of 5580 Ah	59
Fig. 3.20 SOC per year stand-alone system for indoor BTS with battery strings size of 6000 Ah	60
Fig. 3.21 Monthly average daily energy for stand-alone system for outdoor BTS with fixed tilt angle.	61