

THE ROLE OF DIFFUSION WEIGHTED MRI IN THE DIAGNOSIS AND FOLLOW UP OF BREAST CANCER

Thesis

Submitted for Partial Fulfillment of M.Sc. Degree in Radiodiagnosis

Presented By

Ali Najah Mohammed Hasan (M.B.B.Ch)

Supervised By

Dr. Mervat Tawfik Tantawy

Professor of Radiodiagnosis
Faculty of Medicine - Ain shams University

Dr. Rania Mohammed Refaat Abd El Hamid

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain shams University

Ain shams University Faulty of Medicine 2014

List of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Study	3
Review of Literature	
Anatomy of the breast	4
Pathology of breast cancer.	26
MRI technique.	44
MRI of the breast	44
Indication of breast MRI	69
Contraindication of breast MRI	71
Diffusion-weighted imaging of the breast	73
Materials and methods	81
Results	85
Illustrative cases	94
Discussion	110
Summary and Conclusion	118
References	
Arabic Summary	

List of Abbreviations

Abb.	Meaning
ACC	Adenoid cystic carcinoma.
ACR	American Cancer Society.
ADC	Apparent Diffusion Co-efficient.
BIRADS	Breast imaging reporting and data system.
BMI	Body mass index.
BRCA	Breast cancer antigen.
CAD	Computer aided detection.
CT	Computed Tomography.
DCE	Dynamic contrast enhancement.
DCIS	Ductal carcinoma in situ.
DES	Diethylstilbestrol.
DNA	DeoxyriboNucleic Acid.
DWI	Diffusion-weighted Imaging.
EPI	Echo planar Imaging.
FLASH	Fast low-angle shot pulse sequence.
FOV	Field of view.
FSPGR	Fast spoiled gradient recalled echo.
Gd	Gadolinium.
GFR	Glomular fitration rate
IDC	Invasive ductal carcinoma.
ILC	Invasive lobular carcinoma.
IV	Intra venous.
LCIS	Lobular carcinoma in situ.
Max	Maximum.
Min	Minimum.

<u>List of Abbreviations (Cont...)</u>

Abb.	Meaning
MIP	Maximum intensity projection.
MPR	Multi planar reconstruction images.
MRA	Magnetic Resonance angiography.
MR-CAD	Magnetic Resonance Computer Aided Detection.
MRI	Magnetic Resonance Imaging.
N	Number.
NCI	National cancer institute.
NPV	Negative predictive value.
NSF	Nephrogenic systemic sclerosis.
PPV	Positive productive value.
ROC	Receiver Operator Characteristics
ROI	Region of interest.
SD	Standard deviation.
SE	Spin-echo.
SPGR	Spoiled gradient recalled echo.
SPSS	Statistical Package for the Social Science.
STIR	Short T inversion recovery.
T	Tesla.
TDLU	Terminal ductal-lobular unit.
TE	Echo time.
TNM	Tumor, Nodes, Metastases.
TR	Relaxation time.
U.S	Ultrasonography.

List of Tables

Table No.	Title	Page No.
Table (1):	The probability of developing breast cancer within next 10 years	
Table (2):	Classifications of Malignant Breast Lesions	32
Table (3):	TNM Stage Grouping for Breast Cancer	42
Table (4):	T2-Weighted Imaging of Breast Lesions	64
Table (5):	MRI scoring system with combination morphologic and dynamic parameters.	of 677
Table (6):	Modification of MRI scoring system into BI-RA category	
Table (7):	Shows the site & distribution of the detected by lesions in correlation with Histopatholog results.	gical
Table (8):	The histopathological diagnoses of the examined breast lesions.	
Table (9):	MRI BI-RADS of benign and malignant br	
Table (10):	The distribution of benign and malignant les according to the best cut off value	

List of Figures

Fig. No.	Title Page 1	No.
Fig. (1):	Axillary tail of breast	4
Fig. (2):	Anatomical structures of the breast and underlying chest wall	5
Fig. (3):	Glandular breast tissue	6
Fig. (4):	Pectoralis major fascia and suspensory ligament	7
Fig. (5):	Internal and lateral thoracic arteries	8
Fig. (6):	Intercostal arteries	10
Fig. (7):	Thoracoacromial artery	10
Fig. (8):	Superior thoracic artery	11
Fig. (9):	Venous supply of the breast	12
Fig. (10):	Lymphatic drainage of the breast	14
Fig. (11):	Breast quadrants	15
Fig. (12):	T1-weighted, fat-saturated, gadolinium-enhanced Note- fat is dark and muscles are bright with enhancing breast tissue	16
Fig. (13):	Breast MR T2-weighted image	17
Fig. (14):	Post contrast enhancement T1 image demonstrating the normal appearance of skin in MRI	18
Fig. (15):	Unenhanced T1 weighted image	18
Fig. (16):	T2 weighted image	19
Fig. (17):	(A and B) Initial study in the fourth week of the menstrual cycle in a pre menopausal woman.	20
Fig. (18):	T1 post contrast MRI image. In this post menopausal female with predominantly fatty tissue	
Fig. (19):	Postmenopausal patient on hormones for 5 years showing areas of mass-like enhancement (arrow) in the inferior breast that regressed but did not disappear after discontinuing exogenous hormone therapy at repeat scanning 6 weeks later	22

List of Figures (Cont...)

Fig. No.	Title Page 1	No.
Fig. (20):	contrast enhanced MRI showing variable degrees of nipple enhancement depending on blood supply (A) nipple enhances intensely (B) nipple enhances mildly and (C) nipple does not enhance	23
Fig. (21):	A, Lateral thoracic artery (arrow) and branches. B, Internal mammary artery (arrow) anterior to the heart	24
Fig. (22):	Normal axillary lymph node on T1 W MRI	25
Fig. (23):	3D subtraction MIP MRI image showing the axillary lymph nodes as bright enhancement surrounding fatty low-signal hila	25
Fig. (24):	Patient position in MR Scanner.	46
Fig. (25):	Typical breast coil	47
Fig. (26):	Enhancement kinetic curves (A) moderate initial enhancement followed by a persistent enhancement (B) rapid initial enhancement reaching to a plateau (C) rapid initial enhancement followed by washout	52
Fig. (27):	An example of the 3D FLASH sequence	56
Fig. (28):	Management Strategy for any breast lesion	. 666
Fig. (29):	Diffusion of water molecules.	. 755
Fig. (30):	Pie chart shows the site of the total detected breast lesions.	. 877
Fig. (31):	Pie chart shows the Histopathological diagnoses of the 26 examined breast lesions.	. 888
Fig. (32):	Bar chart Shows MRI BI-RADS of benign and malignant breast lesions.	. 899
Fig. (33):	A receiver operating characteristic (ROC curve) for DCE-MRI to differentiate between benign and malignant breast lesions.	.911

List of Figures (Cont..)

Fig.	No.	Title Page N	Vo.
Fig.	(34):	Bar chart shows the mean ADC values of benign and malignant lesions.	. 922
Fig.	(35):	a receiver operating characteristic (ROC curve) analysis for the ADC value to differentiate between benign and malignant breast lesions.	. 933
Fig.	(36):	Bar chart shows distribution of benign and malignant lesions according to the best ADC cut off value	944

INTRODUCTION

Breast cancer is the commonest cancer in women worldwide with an estimated 1.4 million cases in 2008. The rates have been increasing steadily and there is every indication that they will continue to do so over the next few decades (Cuzick, 2010).

When patients present for diagnostic evaluations, our goal is to establish the correct diagnosis, accurately and efficiently. For some women this may include mammographic images only or additional ultrasound; for other patients additional mammographic views, an ultrasound, MRI and a core biopsy are performed (Gilda, 2007).

Mammography is the main investigation for imaging of the breast cancer. Full field digital mammography is superior to standard mammography especially in the women with dense breasts but mammographic images are usually not enough to determine the existence of benign or malignant disease and the radiologist in some circumstances recommend further diagnostic studies(Qaseem et al., 2007).

Mammography is known to have high accuracy in detect breast cancer (sensitivity) but show high false positive rates (specificity) in the detection of breast malignancy (60-80%), resulting in unnecessary biopsies being performed (**Daniel**, **2007**).

Magnetic resonance imaging (MRI) can discriminate benign from malignant lesions. Contrast enhanced MRI study of

the breast is based on the enhancement pattern of the lesions and morphologic changes, with these two criteria breast MRI has a sensitivity of about 75-89 % in detecting malignant breast lesions, however there is an overlap of these criteria with benign lesions which leads to a reported specificity of about 50 to 90 %(Marini et al., 2007).

Nowadays, there is increasing number of published studies which mentioned that the specificity of the breast MRI could be increased by using diffusion –weighted imaging (DWI) (Wenkel et al., 2007).

Diffusion-weighted magnetic resonance imaging (DW-MRI) depends on the microscopic mobility of water. This mobility, classically called Brownian motion, is due to thermal agitation and is highly influenced by the cellular environment of water. Thus, findings on DW-MRI could be an early harbinger of biologic abnormality (Padhani et al., 2009).

By using the DWI sequence, one can calculate the apparent diffusion coefficient (ADC), a quantitative measure that is directly proportional to the water diffusion. High cell proliferation in malignant tumors increases cellular density, creating more barriers to the extracellular water diffusion, reducing the ADC, and resulting in signal loss. This sequence appears to be a useful tool for tumor detection and characterization, as well as for monitoring and predicting treatment response (Pereiera et al., 2009).

AIM OF THE WORK

To highlight the role of diffusion weighted MRI in increasing the specificity of the MRI of the breast for detection of cancer breast in women with primary cancer or recurrent breast cancer.

ANATOMY OF THE BREAST

In young women, it is usually hemispherical and slightly pendulous, overlaps the 2nd to the 6th ribs and their costal cartilages, and extends from the lateral margin of the sternum to the mid axillary line. The greater part of the breast lies in the superficial fascia and can be moved freely in all directions. Its upper lateral edge (axillary tail) extends around the lower border of the pectoralis major and enters the axilla, where it comes into close relationship with the axillary vessels. In middle-aged multiparous women the breast may be large and pendulous, and in older women the breast may be smaller (Figure 1, 2) (Snell, 2012).

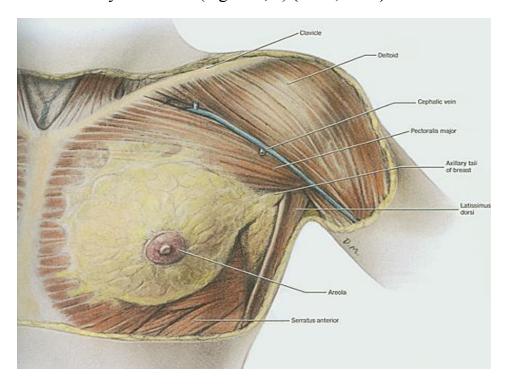


Figure (1): Axillary tail of breast (Quoted from Dashner, 2010).

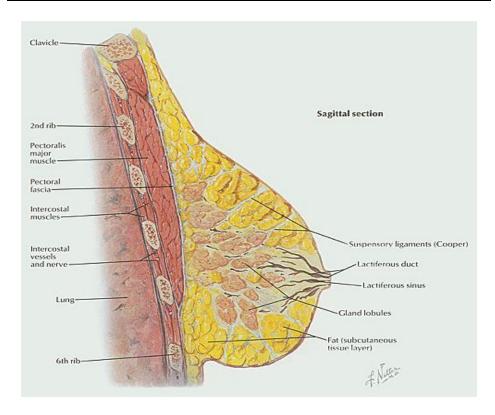


Figure (2): Anatomical structures of the breast and underlying chest wall (Quoted from Agur, 2009).

The lobules group together into larger units called lobes. On average there are 15-20 lobes in each breast arranged roughly in a circular fashion. The distribution of the lobes is not even. However, there is a preponderance of glandular tissue in the upper outer portion of the breast. This is responsible for the tenderness in this region that many women experience prior to their menstrual cycle. It is also the site of half of all breast cancers. The lobes empty into the milk ducts which course through the breast towards the nipple/areolar area. There, they converge into 6-10 larger ducts called collecting ducts (lactiferous duct) just beneath the nipple-

areolar complex; each lactiferous duct opens into a lactiferous sinus, which then continues to drain into a separate opening on the apex of the nipple (Figure 3) (Shiffman, 2009).

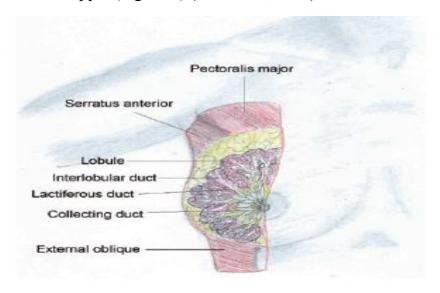


Figure (3): Glandular breast tissue (Quoted from Davis, 2010).

In addition the collecting duct has several branches, which end in a terminal ductal-lobular unit (TDLU), the basic functional and Histopathological unit of the breast. The TDLU is composed of a small segment of terminal duct and a cluster of ductules, which are the effective secretory units. A normal terminal ductal lobular unit ranges from 1 - 4 mm (Canon, 2009).

The breast is anchored to the pectoralis major fascia by the suspensory ligaments (Cooper's Ligaments) (Figure 4). These ligaments connect the two layers of the fascia providing a degree of support to the breast and giving the breast its shape (Jonathan, 2008).

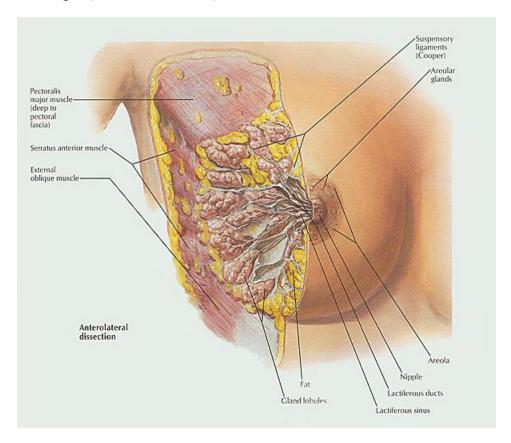


Figure (4): Pectoralis major fascia and suspensory ligament (Quoted from Agur, 2009).