USE OF NATURAL COMPONENTS TO MITIGATE THE ENVIRONMENTAL MICROBIAL POLLUTANTS IN POULTRY PRODUCTS

BY BASSEM ABDEL-RAHMAN HAMDY KHALIFA

B.Sc. Agric. Sc., Cairo University, 1999 Diploma of Agricultural Environmental Sciences, Institute of Environmental Studies and Research, Ain-Shams University, 2011

A Thesis Submitted in Partial Fulfillment of
The Requirements for the Master Degree in
Environmental Science

Department of Environmental Agricultural Science Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

USE OF NATURAL COMPONENTS TO MITIGATE THE ENVIRONMENTAL MICROBIAL POLLUTANTS IN POULTRY PRODUCTS

By

BASSEM ABDEL-RAHMAN HAMDY KHALIFA

B.Sc. Agric. Sc., Cairo University, 1999 Diploma of Agricultural Environmental Sciences, Institute of Environmental Studies and Research, Ain-Shams University, 2011

This Thesis Towards a Master Degree in Environmental Science Has Been Approved by:

Name		Signature
Prof.	Dr. Moustafa Hassan Ragab	••••
	Prof. of Community and Environmental Med	dicine, and
	Occupational Diseases, Dept. of Medical Sc	i.
	Environmental, Institute of Environmental S	tudies and
	Research, Ain Shams University	
Prof.	Dr. Hamdy Moustafa Mohamed Ebeid	
	Prof. of Food Technology, Food Sci. Dept.,	Faculty of
	Agriculture, Ain Shams University	
Prof.	Dr. Hala Ibrahim Awad Allah	
	Prof. of Community and Environmental Med	dicine,
	Dept. of Medical Sci. Environmental, Institu	ite of
	Environmental Studies and Research, Ain Sl	nams
	University	
Prof.	Dr. Mohamed Abdel-Razek El-Nawawy	
	Prof. of Food Microbiology, Food Sci. Dept	., Faculty of
	Agriculture, Ain Shams University	

USE OF NATURAL COMPONENTS TO MITIGATE THE ENVIRONMENTAL MICROBIAL POLLUTANTS IN POULTRY PRODUCTS

By

BASSEM ABDEL-RAHMAN HAMDY KHALIFA

B.Sc. Agric. Sc., Cairo University, 1999 Diploma of Agricultural Environmental Sciences, Institute of Environmental Studies and Research, Ain-Shams University, 2011

A Thesis Submitted in Partial Fulfillment of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Agricultural sciences Institute of Environmental Studies & Research Ain Shams University

Under the supervision of:

Prof. Dr. Mohamed Abdel-Razek El-Nawawy

Prof. of Food Microbiology, Food Sci. Dept., Faculty of Agriculture, Ain Shams University

Prof. Dr. Moustafa Hassan Ragab

Prof. of Community and Environmental Medicine, and Occupational Diseases, Dept. of Environmental Medical Sci., Institute of Environmental Studies and Research, Ain Shams University

ACKNOWLEDGEMENTS

Appreciations are to ALLAH for the successful completion of this thesis.

Prof. Dr. Mohamed Abdel-Razek El-Nawawy, Professor of food microbiology, Food Sci. Dept., Faculty of Agriculture, Ain Shams University, aside from your vast experience and professionalism, your constant attention and caring far exceeded the scope of your responsibilities as a thesis supervisor. I cannot express my gratitude for all your valuable guidance and patience throughout the whole course of this work.

I would like to thank **Prof. Dr. Moustafa Hassan Ragab,** Professor of Community and Environmental Medicine, and occupational diseases, Department of Environmental Medical Science, Institute of Environmental Studies and Research, Ain Shams University for his valuable advice and cooperation during the investigation. Thank you so much for all of your help and wonderful guidance.

I would like to thank all my colleagues and staff members in Department of Agriculture Sciences, Institute of Environmental Studies & Research, Ain Shams Univ. for their assistance.

I would like to express my appreciation to my colleagues at U.S.NAMRU-3 especially my supervisor **Dr. Momtaz Wasfy**, where I gained all my scientific experience and writing skills throughout my working years with him.

I dedicate this work to the family, **Mother**, **Father**, **Sister** and **Brothers** and to my little stars (sons) **Malik** and **Adam**.

Last, but not least, I would like to give special appreciation dedicated to my dear wife, **Ms. Reham Abdel-Basset** for her understanding and love during the past years. Her support and encouragement was in the end what made this thesis possible thank you for your continuous support.

ABSTRACT

This study was carried out to investigate the potential effect of using essential oil extracts of Clove (*Syzygium aromaticum*), Lemongrass (*Cymbopogon citratus*) and Allspice (*Pimenta dioica*) as natural antibacterial agents at three different concentrations (10, 20 and 50 ml/L) against 67 human isolates belonging to three different species of Gram negative bacteria including *Salmonella* spp (16), *Shigella* spp (16) and *Campylobacter* spp (18) and one Gram positive bacteria which is *Staph. aureus* (17) isolated from diarrheal and septicemic human cases. The screening was performed by standard disc diffusion method.

Essential oil extract of clove exhibited maximum activity against *Shigella* spp with 11.15 mm mean diameter of inhibition zone. While, the Essential oil extract of lemongrass exhibited maximum activity against *Campylobacter* spp with 59.55 mm mean diameter of inhibition zone. All tested isolates were found resistant to allspice essential oil extract. Accordingly, lemongrass essential oil extract was found to be effectively inhibiting both gram-positive and gram-negative bacteria and can be a good source of antibacterial agents for possible infections in poultry products. Furthermore, in vitro study on 198 chicken breast and minced chicken meat samples were obtained using lemongrass essential oil to determine its efficiency at 4°C. The least tested concentration (10 mL/Kg) was found to be effective without deteriorating the sensory characterizations.

Key Words: *Salmonella*, *Shigella*, *Campylobacter*, *Staph. aureus*, clove, lemongrass, natural antibacterial agents

CONTENTS

	Page no.
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	. 4
2.1. Poultry production	. 4
2.1.1. Poultry production in Egypt	. 7
2.1.2. Poultry production difficulties	. 7
2.2. Food-borne diseases worldwide	. 7
2.3. Pathogenic bacteria in food	. 9
2.4. Campylobacter spp as food contaminants	. 11
2.4.1. Prevalence of <i>Campylobacter</i> spp in foods	11
2.4.2. Campylobacter spp in poultry	. 12
2.4.3. <i>Campylobacter</i> spp infections in Egypt	. 13
2.4.4. Detection of Campylobacter spp	. 16
2.5. Salmonella spp as food contaminants	. 16
2.5.1. Prevalence of Salmonella spp in foods	. 16
2.5.2. Salmonella spp in poultry	. 17
2.5.3. Salmonella spp infections in Egypt	. 18
2.5.4. Detection of Salmonella spp	. 21
2.6. Shigella spp as food contaminants	. 21
2.6.1. Prevalence of <i>Shigella</i> spp in foods	. 21
2.6.2. Shigella spp in poultry	. 22
2.6.3. Shigella spp infections in Egypt	. 23
2.6.4. Detection of <i>Shigella</i> spp	. 23
2.7. Staphylococcus spp as food contaminants	. 24
2.7.1. Prevalence of Staphylococcus spp. in foods	. 24
2.7.2. Staphylococcus spp in poultry	. 25
2.7.3. Staphylococcus spp infections in Egypt	. 25
2.7.4. Detection of <i>Staphylococcus</i> spp	. 26
2.8. Medicinal Herbs and spices	. 26

		Page
		no.
	2.8.1. Use of some medicinal Herbs and spices	. 27
	2.8.1.1. Clove	. 28
	2.8.1.2. Lemongrass	. 28
	2.8.1.3. Allspice	
	2.8.2. Herbs and spices extract	
	-	
	2.8.2.1. Minimal inhibitory concentration	. 31
	2.8.2.2. Anti- <i>Campylobacter</i> activity of Herbs and spices	
	extract.	. 31
	2.8.2.3. Anti-Salmonella activity of Herbs and spices extract	
		. 32
	2.8.2.4. Anti-Shigella activity of Herbs and spices extract	
		. 32
	2.8.2.5. Anti- <i>Staphylococcus</i> activity of Herbs and spices	
	extract	32
3 МА'	TERIAL AND METHODS	34
	cterial strains	
3.1. D u	3.2. Culture media used	
	3.3. Reagents	
	3.3.1. Gram stain	
	3.3.2. API 20E strips	. 36
	3.3.3. Catalase test	. 36
	3.3.4. Coagulase rabbit plasma test	37
	3.3.5. Hippurate hydrolysis test	
	3.3.6. Indoxyl acetate hydrolysis	
	3.3.7. Oxidase test	
3.4.	Cultivation and confirmation of bacterial isolates	
	3.4.1. Isolates cultivation	
	3.4.2. Testing isolates confirmation	
	3.4.2.1. Confirmation of <i>Campylobacter</i> isolates	
	3.4.2.2. Confirmation of <i>Salmonella</i> and <i>Shigella</i> isolates	
3 5	3.4.2.3. Confirmation of <i>Staphylococcus</i> isolates	
5.5.	3.5.1. Spices essential oil extract	
	C.C.I. Spread addition on annual	2

F	Page
	no.
3.5.2. Solvent preparation	42
3.6. Antimicrobial activity screening	43
3.7. Effect of edible natural antimicrobials on pathogenic foodborne	
bacteria in Poultry products	
3.7.1. Bacterial inoculums	
3.7.2. Preparation of essential oils	
3.7.3. Poultry products	46
3.7.4. Experimental treatment for poultry products	
3.7.4.1. Chicken breast	46
3.7.4.2. Minced chicken	47
3.7.4.2.1. Microbiological analysis	48
3.7.4.2.2. Sensory characteristics evaluation	49
3.7.4.2.3. Statistical analysis	49
4. RESULTS	. 50
4.1. Confirmation of bacterial isolates	50
4.1.1. <i>Campylobacter</i> spp isolates	50
4.1.2. Salmonella and Shigella spp isolates	. 52
4.1.3. Staphylococcus aureus isolates	52
4.2. Antimicrobial activity of Herbs and spices essential oil extracts	
against foodborne pathogenic bacteria	54
4.2.1. Negative control check	54
4.2.2. <i>Campylobacter</i> spp treated by clove extract	55
4.2.3. <i>Campylobacter</i> spp treated by lemongrass extract	56
4.2.4. <i>Salmonella</i> spp treated by clove extract	58
4.2.5. Salmonella spp treated by lemongrass extract	. 59
4.2.6. <i>Shigella</i> spp treated by clove extract	60
4.2.7. <i>Shigella</i> spp treated by lemongrass extract	
4.2.8. <i>Staphylococcus aureus</i> treated by clove extract	62

1	Page
	no.
4.2.9. Staphylococcus aureus treated by lemongrass extract	63
4.2.10. All types of bacteria treated by Allspice extract	65
4.2.11. Collective and summary for all types of bacteria	
treated by Herbs and spices essential oil extract	65
4.3. Antimicrobial activity of extracted essential oil of lemongrass on	
pathogenic bacteria causes foodborne diseases in Poultry products	. 68
4.3.1. Control groups	. 68
4.3.1.1 Inoculated groups with each bacterial suspension only	. 68
4.3.1.2. Untreated groups neither with any bacterial	
suspension nor lemongrass essential oil	. 70
4.3.2. Chicken breast inoculated with different types of	
bacteria and treated with 10 mL/Kg essential oil of	
lemongrass	71
4.3.3. Minced chicken inoculated with different types of	
bacteria and treated with 10 mL/Kg essential oil of	
lemongrass	. 73
4.3.4. Chicken breast inoculated with different types of	
bacteria and treated with 20 mL/Kg essential oil of	
lemongrass	. 75
4.3.5. Minced chicken inoculated with different types of	
bacteria and treated with 20 mL/Kg essential oil of	
lemongrass	. 77
4.3.6. Chicken breast inoculated with different types of	
bacteria and treated with 50 mL/Kg essential oil of	
lemongrass	. 79
4.3.7. Minced chicken inoculated with different types of	
bacteria and treated with 50 mL/Kg essential oil of	
lemongrass	81

		Page
		no.
	4.3.8. Effect of different concentrations of lemongrass	
	essential oil on chicken breast inoculated with Campylobacte	r
	spp	83
	4.3.9. Effect of different concentrations of lemongrass	
	essential oil on minced chicken meat inoculated with	
	Campylobacter spp	85
	4.3.10. Effect of different concentrations of lemongrass	
	essential oil on chicken breast inoculated with Salmonella sp	p 87
	4.3.11. Effect of different concentrations of lemongrass	
	essential oil on minced chicken meat inoculated with	
	Salmonella spp	. 89
	4.3.12. Effect of different concentrations of lemongrass	
	essential oil on chicken breast inoculated with Shigella spp	91
	4.3.13. Effect of different concentrations of lemongrass	
	essential oil on minced chicken meat inoculated with Shigella	a
	spp	93
	4.3.14. Effect of different concentrations of lemongrass	
	essential oil on chicken breast inoculated with Staph. aureus.	95
	4.3.15. Effect of different concentrations of lemongrass	
	essential oil on minced chicken meat inoculated with <i>Staph</i> .	
	aureus spp	97
4.4. Ev	valuation of some sensory characteristics of chicken meat after	
adding	the lemongrass essential oil	99
	4.4.1. Effect of adding lemongrass essential oil on chicken	
	meat color	. 99
	4.4.2. Effect of adding lemongrass essential oil on chicken	
	meat discoloration	10
	4.4.3. Effect of adding lemongrass essential oil on chicken	
	meat odor	103

	Page	
	no.	
4.4.4. Effect of adding lemongrass essential oil on chicken meat off odor	104	
5. DISCUSSION	106	
6. SUMMARY, CONCLUSION AND RECOMENDATION	114	
REFERENCES	122	
APPENDIX	145	
ARARIC SUMMARY		

LIST OF TABLES

Fabl	e no. Pa	ge no.
1	World and selected nation production of poultry meat and eggs (in	
	million metric tons) for 1995 and 2005	6
2	Incidence rates (per 100,000 population) of bacterial causes of	
	foodborne illness by race and ethnicity from 2008-2011 (data	
	obtained from FoodNet Final Reports 2008–2011 (CDC website))	
		11
3	Characteristics of cases and controls enrolled in study of	
	Campylobacter infection and Guillain-Barré Syndrome, the Arab	
	Republic of Egypt, April 2001 through September	
	2003	15
4	Percentage of multiple drug-resistant (MDR) Sal. typhi isolates	
	recovered from patients with typhoid fever at a hospital in Cairo,	
	Egypt, during a 14-year period, according to the results of	
	susceptibility testing	20
5	Basic phenotypic characteristics of selected thermophilic	
	Campylobacter species	40
6	Biochemical reactions involved in API 20E (bioMérieux, Inc.,	
	France) test kits and typical Salmonella and Shigella reactions	41
7	Campylobacter spp isolates confirmation	51
8	Salmonella and Shigella spp isolates confirmation	53
9	Staphylococcus aureus isolates confirmation	54
10	Inhibition zone (mm) of Campylobacter spp treated by different	5.0
	concentration of clove	56
11	Inhibition zone (mm) of Campylobacter spp treated by different	57
	concentration of lemongrass	57
12	Inhibition zone (mm) of Salmonella spp treated by different	5 0
	concentration of clove	58

Гablе	e no. Pag	ge no.
13	Inhibition zone (mm) of Salmonella spp treated by different	
	concentration of lemongrass	59
14	Inhibition zone (mm) of Shigella spp treated by different	
	concentration of clove	61
15	Inhibition zone (mm) of Shigella spp treated by different	
	concentration of lemongrass	62
16	Inhibition zone (mm) of Staphylococcus aureus treated by different	
	concentration of clove	63
17	Inhibition zone (mm) of Staphylococcus aureus treated by different	
	concentration of lemongrass extract	64
18	Mean Inhibition zone (mm) for studied types of bacteria treated by	
	three different essential oils extract with various	
	concentration.	66
19	Number of bacterial colonies over reading days for control groups	
	(Chicken breast and Minced chicken meat) inoculated with each	
	bacterial suspension only at 4°C (log CFU/gm)	69
20	Number of bacterial colonies over reading days for control groups	
	uninoculated with any bacterial suspension or essential oil (log	
	CFU/gm)	71
21	Number of bacterial colonies over reading days for chicken breast	
	inoculated with different types of bacteria and treated with 10	
	mL/Kg lemongrass (log CFU/gm)	72
22	Number of bacterial colonies over reading days for minced chicken	
	inoculated with different types of bacteria and treated with 10	
	mL/Kg lemongrass (log CFU/gm)	74
23	Number of bacterial colonies over reading days for chicken breast	
	inoculated with different types of bacteria and treated with 20	
	mL/Kg lemongrass (log CFU/gm)	76

Table	no. Pag	e no.
24	Number of bacterial colonies over reading days for minced chicken	
	inoculated with different types of bacteria and treated with 20	
	mL/Kg lemongrass (log CFU/gm)	78
25	Number of bacterial colonies over reading days for chicken breast	
	inoculated with different types of bacteria and treated with 50	
	mL/Kg lemongrass (log CFU/gm)	80
26	Number of bacterial colonies over reading days for minced chicken	
	inoculated with different types of bacteria and treated with 50	
	mL/Kg lemongrass (log CFU/gm)	82
A.I.1	Campylobacter spp, Shigella spp, Salmonella enterica subsp.	
	enterica serovars and Staphylococcus aureus obtained from human	
	blood and stool isolates used in this study including isolation date.	145
A.I.2	Preparation of used essential oil (EO) suspensions	147
A.I.3	Herbs and spices oil extract discs and their contents used for testing	
	in the study	148
A.I.4	Chicken breast groups of samples	149
A.I.5	Minced chicken groups of samples	153

LIST OF FIGURES

Fi	ig no.	age
		no.
1	Control groups (Chicken breast and Minced chicken meat)	
	inoculated with each bacterial suspension only (Log CFU/gm)	70
2	Control groups (Chicken breast and Minced chicken meat)	
	uninoculated with any bacterial suspension or essential oil (Log	
	CFU/gm)	71
3	Antimicrobial activity of lemongrass essential oil (10 ml/Kg) on	
	chicken breast inoculated with different types of bacteria	73
4	Antimicrobial activity of lemongrass essential oil (10 ml/Kg) on	
	minced chicken meat inoculated with different types of bacteria	75
5	Antimicrobial activity of lemongrass essential oil (20 ml/Kg) on	
	chicken breast inoculated with different types of bacteria	77
6	Antimicrobial activity of lemongrass essential oil (20 ml/Kg) on	
	minced chicken meat inoculated with different types of bacteria	. 79
7	Antimicrobial activity of lemongrass essential oil (50 ml/Kg) on	
	chicken breast inoculated with different types of bacteria	81
8	Antimicrobial activity of lemongrass essential oil (50 ml/Kg) on	
	minced chicken meat inoculated with different types of bacteria	83
9	Chicken breast inoculated with Camp. jejuni ATCC 33291 and	
	treated by lemongrass (log CFU/gm)	. 84
10	Chicken breast inoculated with Camp. jejuni isolate and treated by	
	lemongrass (log CFU/gm)	85
11	Minced chicken meat inoculated with Camp. jejuni ATCC 33291	
	and treated by lemongrass (log CFU/gm)	86
12	Minced chicken meat inoculated with Camp. jejuni isolate and	
	treated by lemongrass (log CFU/gm)	87
13	Chicken breast inoculated with Sal. typhi ATCC 19430 and treated	
	by lemongrass (log CFU/gm)	. 88