Inherited Thrombophilia in Paediatric Ischemic Stroke

Thesis

Submitted for the Partial Fulfillment of M.D. Degree in Pediatrics

By **Maha Zakariya Ramadan Mohammed** M.B, B.Ch, 2008 – M.Sc. In Pediatrics, 2013

Under Supervision of **Prof. Mohsen Saleh El Alfy**

Professor of pediatrics Faculty of Medicine - Ain Shams University

Prof. Hoda Yahya Tomoum

Professor of Pediatrics Faculty of Medicine- Ain Shams University

Prof. Yasser Abdel Azeem Abbas

Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Prof. Rasha Hussein Aly

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Dr. Rania Hamed Shatla

Associate Professor of Pediatrics Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Acknowledgement

First and foremost, thanks and praise **ALLAH**, most gracious, most merciful.

I would like to express my deep gratitude, thanks and respect to our eminent **Prof. Mohsen Saleh El Alfy,** *Professor of Pediatrics, former head of department of pediatrics, Faculty of Medicine, Ain Shams University* for giving me the opportunity to work under his meticulous supervision and for his excellent guidance and powerful support. His great help and support will never be forgotten.

No words can be sufficient to express my deep gratitude, admire and appreciation to **Prof. Hoda Yahya Tomoum**, *Professor of Pediatrics, Faculty of Medicine, Ain Shams University* for her great support, valuable advice and continuous encouragement. Her sincere efforts and help will never be forgotten and will always be a guidance for me.

I would like to thank **Prof.Yasser Abdel Azeem Abbas**, *Professor of Radiodiagnosis*, *Faculty of Medicine*, *Ain Shams University* for accepting to supervise my work in this study.

I wish to express my deep thanks and utmost gratitude to **Prof. Rasha Hussein Aly,** *Professor of Pediatrics, Faculty of Medicine, Ain Shams University,* for her guidance, advice and

fruitful suggestions without which this work would have never been accomplished.

I would like to express my deep thanks and appreciation to **Dr. Rania Hamed Shatla**, Associate Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her keen support and helpful instructions concerning the practical work of this thesis.

I wish to express my deep appreciation and gratitude to **Prof. Ezzat Elsobky**, for his great help to complete this work. His efforts are really appreciated.

Many thanks and appreciation to all the patients who accepted to be enrolled in this study, without their help, we would never be able to accomplish this work.

Last but not by any means least, I would like to express my warm gratitude to my Mother, Father and all members of my family for their kindness, trust, unfailing support and much needed encouragement.

List of Contents

Title	Page No.
Introduction	1
Aim of the study	4
Literature review	5
Subjects and methods	33
Results	42
Discussion	66
Summary	81
Conclusion	85
Recommendations	86
References	87
Appendix	110
Master sheet	112
Arabic Summary	

List of Abbreviations

ACA	Anterior cerebral artery		
ACCP	American College of Chest Physicians		
ADC	Apparent diffusion coefficient		
AHA	American heart association		
AIS	Arterial ischemic stroke		
ANA	Antinuclear antibodies		
AT III	Antithrombin III		
BG	Basal ganglia		
BP	Blood pressure		
CBC	Complete blood count		
CI	Confidence interval		
CNS	Central nervous system		
CRP	C reactive protein		
CSF	Cerebrospinal fluid		
CSVT	Cerebral sinovenous thrombosis		
CT	Computed tomography		
CTA	Computed tomography angiography		
DNA	Deoxyribonucleic acid		
DRVV	VV Dilute Russell viper venom		
DWI	Diffusion-weighted image		
ECG	Electrocardiogram		

EDTA	Ethylene diamine tetra-acetic acid		
EEG	Electroencephalogram		
ELISA	Enzyme-Linked Immunosorbent Assay		
ESR	Erythrocyte sedimentation rate		
FPIA	Fluorescence polarization immunoassay		
HCY	Homocysteine		
HDL	High density lipoprotein		
HIV	Human immunodeficiency virus		
ICA	Internal carotid artery		
ICP	Intracranial pressure		
IPSS	International Pediatric Stroke Study		
IQR	Inter quartile range		
ISCVT	International Study on Cerebral Venous and Dural Sinuses Thrombosis		
ISTH	International Society of Thrombosis and hemostasis		
IV	Intravenous		
KFT	Kidney function tests		
LDL	Low density lipoprotein		
LFT	Liver function tests		
LMWH	Low molecular weight heparin		
LOD-PAP- Test	Lactate oxidase – p –aminophenazone test		
MCA	Middle cerebral artery		

MELAS	Mitochondrial encephalo-myopathy with lactic acidemia and stroke		
MRA	Magnetic resonance arteriography		
MRI	Magnetic resonance imaging		
MRV	Magnetic resonance venography		
MTHFR	Methylenetetrahydrofolate reductase		
NS	Normal saline		
OR	Odd's ratio		
PCA	Posterior cerebral artery		
PCR	Polymerase chain reaction		
PT	Prothrombin		
RCP	Royal College of Physicians		
SBP	Systolic blood pressure		
SD	Standard deviation		
SSS	Superior sagittal sinus		
TG	Triglycerides		
TIA	Transient ischemic attack		
TLC	Total leukocytic count		
tPA	Tissue plasminogen activator		
UFH	Unfractionated heparin		
VIPS	Vascular effects of Infection in Pediatric Stroke		

List of Figures

Fig.	Title		
1.	Classification of pediatric stroke	6	
2.	MRI of Moyamoya vasculopathy	11	
3.	CT brain of a patient with stroke	21	
4.	Brain MRI of a patient with acute stroke		
5.	DWI and ADC images of a patient with AIS	22	
6.	T2WI, DWI and MRA of a patient with acute thalamic infarct	23	
7.	MRV of a patient with CSVT	24	
8.	Algorithm for assessment and care of children with signs and symptoms of acute arterial ischemic stroke	29	
9.	Possible staining patterns for different polymorphic positions	40	
10.	Distribution of thrombophilia mutations among stroke patients	46	
11.	DWI and MRA of a patient with Moyamoya	59	
12.	DWI and T2WI of a patient with Moyamoya	61	
13.	CT angiography of a patient with Moyamoya disease.	62	
14.	CT brain of a patient with homocystinuria	63	
15.	MRA of a patient with homocystinuria	64	

List of Tables

Table	Title				
1	Pathophysiological background of presumed prothrombotic risk factors for childhood first ischemic stroke				
2	Risk factors for AIS and CSVT				
3	Laboratory and radiological investigations to be considered in pediatric ischemic stroke				
4	Classification of investigations according to duration of onset of stroke				
5	The management of AIS according to the 3 guidelines RCP, ACCP and AHA				
6	Clinical data and presentation among AIS and CSVT patients				
7	Laboratory data in the studied patients				
8	Results of protein C protein S, Antithrombin III and homocysteine in the studied patients				
9	Results of thrombophilia mutations (Factor V Leiden, Prothrombin 20210 and MTHFR) among the studied patients with AIS and CSVT	47			
10	Blood vessel involvement according to results of MRA and MRV	48			

11	Clinical data and presentation among patients with studied gene mutations				
12	Laboratory data among patients with thrombophilia mutations				
13	Results of protein C, protein S, Antithrombin III and homocysteine among patients with thrombophilia mutations				
14	Blood vessel involvement according to results of MRA and MRV among patients with thrombophilia mutations	54			
15	Clinical data and presentation among patients with MTHFR mutation and patients with no MTHFR mutation				
16	Laboratory data among patients with MTHFR mutation and patients with no MTHFR mutation				
17	Results of protein C, protein S, Antithrombin III and homocysteine among patients with MTHFR mutation and patients with no MTHFR mutation	57			
18	Blood vessel involvement according to results of MRA and MRV among patients with MTHFR mutation and patients with no MTHFR mutation	58			
19	Risk factors of arterial and venous stroke	65			
20	Summarizes the results of inherited thrombophilia in pediatric arterial ischemic stroke in the medical literature				

21	Different ranges	laboratory	pediatric	reference	110
22	Reference range of protein C protein S and AT III				111

ABSTRACT

Background: Pediatric stroke, though not common but is a cause of subsequent morbidity, with resultant major medical and financial burden. Diverse risk factors can predispose to pediatric stroke including thrombophilia. Thrombophilia screening is currently recommended for any pediatric patient with arterial or venous stroke.

Objectives: To explore the risk factors, clinical features, and neuroimaging findings and to investigate the role of thrombophilia in a cohort of children with arterial ischemic stroke (AIS) and cerebral sinovenous thrombosis (CSVT).

Subjects and Methods: The study included pediatric patients with clinical and neuroimaging evidences of stroke recruited from the Pediatric Neurology Outpatient Clinic (Ain Shams University) over a period of 18 months. Patient with sickle cell disease, cardiac diseases, CNS infection or hemorrhagic stroke were excluded.

Results: 31 patients were diagnosed with stroke; 25 had AIS and five patients had CSVT. As regards thrombophilia mutations; 12 patients were heterozygous for MTHFR C677T variant, two patients were homozygous for the same variant, while two patients were heterozygous for factor V Leiden mutation and another two were heterozygous for both

MTHFR C677T variant and factor V Leiden mutation. None of the patients carried the factor II G20210A variant.

Conclusion: Multiple risk factors can predispose to pediatric stroke. Heterozygous MTHFR C677T was prevalent among pediatric patients with stroke in Egypt.

Key words: pediatric, stroke, risk factors, thrombophilia.

INTRODUCTION

Pediatric stroke is defined as any neurological event including a seizure associated with an acute infarction shown by magnetic resonance imaging (*Dlamini & Kirkham 2009*).

Stroke in children is not a common condition with incidence rates ranging from 2 to 8 per 100,000 in children up to 14 years (*Mekitarian Filho & Carvalho 2009*). Nevertheless, stroke and cerebrovascular disorders are important causes of morbidity and mortality among children; they are amongst the top ten causes of childhood death (*Pappachan & Kirkham 2008*).

It is evident from numerous studies that the frequency of inherited prothrombotic factors is increasing in pediatric stroke, nevertheless, thrombophilia alone as a risk factor does not fully explain stroke in a child as it represents only a mild risk factor (*Zadro & Herak 2012*).

Approximately 20-50% of the pediatric patients with stroke have prothrombotic disorders (*Balcerzyk et al. 2011*). Various prothrombotic risk factors have been investigated in pediatric stroke including elevated homocysteine, lipoprotein (a), antithrombin III, protein C, protein S deficiency, Factor V Leiden and Factor II G20210A (*Zadro & Herak 2012*).

A pilot study on Egyptian children with pediatric stroke was conducted on 2012 and showed that methylenetetrahydrofolate reductase MTHFR polymorphism was present in 50% of patients; 25% of the patients with methylenetetrahydrofolate reductase demonstrated combined thrombophilic abnormalities. 15% of patients manifested heterozygous factor V Leiden mutation, whereas a heterozygous prothrombin mutation was present in only (5%). Low protein S was detected in 10% patients (*Shatla et al. 2012*).

The American heart association (AHA) pediatric stroke guidelines suggested that "although the risk of stroke from most prothrombotic states is relatively low, the risk tends to increase when prothrombotic disorder occurs in children with other risk factors". Thus, it is reasonable to evaluate for the more common prothrombotic states even when another stroke risk factor has been identified (*Roach et al. 2008*).

Although multiple types of genetic and acquired thrombophilia are established as independent risk factors for incident AIS, data supporting significant prognostic impact upon recurrence risk are limited to a few individual traits such as elevated lipoprotein (a), protein C deficiency, and the presence of multiple risk factors (*Strater et al. 2002; Bernard et al. 2011*).